QUALITATIVE ANALYSIS OF CERTAIN REACTION-DIFFUSION SYSTEMS OF THE FITZHUGH-NAGUMO TYPE

被引:3
|
作者
Ambrisio, B. [1 ,2 ]
机构
[1] Normandie Univ, UNIHAVRE, LMAH, FR CNRS 3335,ISCN, F-76600 Le Havre, France
[2] Hudson Sch Math, New York, NY 10001 USA
来源
关键词
  Hopf bifurcation; reaction-diffusion; FizHugh-Nagumo; Liouville equa-tion; LaSalle's principle; NERVE AXON EQUATIONS; OSCILLATORY TAILS; HOMOCLINIC ORBITS; TRAVELING-WAVES; STABILITY; EXISTENCE; PROPAGATION; PULSES;
D O I
10.3934/eect.2023023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This article aims to provide insights into the qualitative analysis of some nonlinear Reaction-Diffusion (RD) systems arising in Neuroscience. We first introduce a non-homogeneous FitzHugh-Nagumo (nhFHN) featuring excitability and oscillatory properties. Then, we discuss the qualitative analysis of a toy model related to nhFHN. In particular, we focus on the convergence of solutions of the toy model toward different solutions (fixed point, periodic) and show the existence of a cascade of Hopf bifurcations. Finally, we connect this analysis to the nhFHN system.
引用
收藏
页码:1507 / 1526
页数:20
相关论文
共 50 条
  • [1] Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type
    Ambrosio, B.
    Aziz-Alaoui, M. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (05) : 934 - 943
  • [2] Patterns of interaction of coupled reaction-diffusion systems of the FitzHugh-Nagumo type
    Zhang, Chunrui
    Ke, Ai
    Zheng, Baodong
    NONLINEAR DYNAMICS, 2019, 97 (02) : 1451 - 1476
  • [3] GLOBAL ATTRACTOR OF COMPLEX NETWORKS OF REACTION-DIFFUSION SYSTEMS OF FITZHUGH-NAGUMO TYPE
    Ambrosio, B.
    Aziz-Alaoui, M. A.
    Phan, V. L. E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3787 - 3797
  • [4] Analysis of a nonlinear reaction-diffusion system of the Fitzhugh-Nagumo type with Robin boundary conditions
    Al-Juaifri, Ghassan A.
    Harfash, Akil J.
    RICERCHE DI MATEMATICA, 2023, 72 (01) : 335 - 357
  • [5] Analysis of a nonlinear reaction-diffusion system of the Fitzhugh-Nagumo type with Robin boundary conditions
    Ghassan A. Al-Juaifri
    Akil J. Harfash
    Ricerche di Matematica, 2023, 72 : 335 - 357
  • [6] RIGOROUS DERIVATION OF THE NONLOCAL REACTION-DIFFUSION FITZHUGH-NAGUMO SYSTEM
    Crevat, Joachim
    Faye, Gregory
    Filbet, Francis
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 346 - 373
  • [7] NUMERICAL SIMULATION OF VARIABLE FITZHUGH-NAGUMO REACTION-DIFFUSION PROBLEM AND IT'S ANALYSIS
    Singh, Manpal
    Das, S.
    Rajeev
    Craciun, M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 810 - 838
  • [8] On a Variational Problem Arising from the Three-component FitzHugh-Nagumo Type Reaction-Diffusion Systems
    Kajiwara, Takashi
    Kurata, Kazuhiro
    TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (01) : 131 - 174
  • [9] Synchronization control for reaction-diffusion FitzHugh-Nagumo systems with spatial sampled-data
    Chen, Sheng
    Lim, Cheng-Chew
    Shi, Peng
    Lu, Zhenyu
    AUTOMATICA, 2018, 93 : 352 - 362
  • [10] THE SUB-SUPERSOLUTION METHOD FOR THE FITZHUGH-NAGUMO TYPE REACTION-DIFFUSION SYSTEM WITH HETEROGENEITY
    Kajiwara, Takashi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (05) : 2441 - 2465