QUALITATIVE ANALYSIS OF CERTAIN REACTION-DIFFUSION SYSTEMS OF THE FITZHUGH-NAGUMO TYPE

被引:3
|
作者
Ambrisio, B. [1 ,2 ]
机构
[1] Normandie Univ, UNIHAVRE, LMAH, FR CNRS 3335,ISCN, F-76600 Le Havre, France
[2] Hudson Sch Math, New York, NY 10001 USA
来源
关键词
  Hopf bifurcation; reaction-diffusion; FizHugh-Nagumo; Liouville equa-tion; LaSalle's principle; NERVE AXON EQUATIONS; OSCILLATORY TAILS; HOMOCLINIC ORBITS; TRAVELING-WAVES; STABILITY; EXISTENCE; PROPAGATION; PULSES;
D O I
10.3934/eect.2023023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This article aims to provide insights into the qualitative analysis of some nonlinear Reaction-Diffusion (RD) systems arising in Neuroscience. We first introduce a non-homogeneous FitzHugh-Nagumo (nhFHN) featuring excitability and oscillatory properties. Then, we discuss the qualitative analysis of a toy model related to nhFHN. In particular, we focus on the convergence of solutions of the toy model toward different solutions (fixed point, periodic) and show the existence of a cascade of Hopf bifurcations. Finally, we connect this analysis to the nhFHN system.
引用
收藏
页码:1507 / 1526
页数:20
相关论文
共 50 条
  • [41] Synchronization properties of coupled FitzHugh-Nagumo systems
    Tessone, CJ
    Toral, R
    Mirasso, CR
    Gunton, JD
    PHYSICS OF COMPLEX SYSTEMS (NEW ADVANCES AND PERSPECTIVES), 2004, 155 : 461 - 467
  • [42] Analytic first integrals of the FitzHugh-Nagumo systems
    Llibre, Jaume
    Valls, Claudia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (02): : 237 - 245
  • [43] Stabilization of Solutions to a FitzHugh-Nagumo Type System
    Hilhorst, Danielle
    Rybka, Piotr
    JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) : 291 - 304
  • [44] Stabilization of Solutions to a FitzHugh-Nagumo Type System
    Danielle Hilhorst
    Piotr Rybka
    Journal of Statistical Physics, 2010, 138 : 291 - 304
  • [45] Stationary probability distributions for FitzHugh-Nagumo systems
    Kostur, M
    Sailer, X
    Schimansky-Geier, L
    FLUCTUATION AND NOISE LETTERS, 2003, 3 (02): : L155 - L166
  • [46] Control of spiral waves in FitzHugh-Nagumo systems
    Gao Jia-Zhen
    Xie Ling-Ling
    Xie Wei-Miao
    Gao Ji-Hua
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [47] On the dynamical behaviour of FitzHugh-Nagumo systems: Revisited
    Ringkvist, M.
    Zhou, Y.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2667 - 2687
  • [48] Lyapunov functionals and stability for FitzHugh-Nagumo systems
    Freitas, P
    Rocha, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 208 - 227
  • [49] Synchronization of coupled chaotic FitzHugh-Nagumo systems
    Aqil, Muhammad
    Hong, Keum-Shik
    Jeong, Myung-Yung
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1615 - 1627
  • [50] Standing Waves Joining with Turing Patterns in FitzHugh-Nagumo Type Systems
    Chen, Chao-Nien
    Ei, Shin-Ichiro
    Lin, Ya-Ping
    Kung, Shih-Yin
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) : 998 - 1015