Polymer-Supported Liquid Layer Electrolyzer Enabled Electrochemical CO2 Reduction to CO with High Energy Efficiency

被引:10
|
作者
Li, Shangyu [1 ,2 ]
Ma, Yiwen [1 ,2 ]
Zhao, Tiancheng [1 ,2 ]
Li, Jiaxin [1 ,2 ]
Kang, Xinyue [1 ,2 ]
Guo, Wen [1 ,2 ]
Wen, Yunzhou [1 ,2 ]
Wang, Liping [1 ,2 ]
Wang, Yurui [3 ]
Lin, Renxing [3 ]
Li, Tiantian [3 ]
Tan, Hairen [3 ]
Peng, Huisheng [1 ,2 ]
Zhang, Bo [1 ,2 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
[2] Fudan Univ, Lab Adv Mat, Shanghai 200438, Peoples R China
[3] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; conversion; electrochemical reduction; electrolyzers; polymer-supported liquid layers; low cell voltage; CARBON-DIOXIDE; PH MEASUREMENT; ELECTROREDUCTION; CONVERSION; CATALYST;
D O I
10.1002/open.202100084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical conversion of carbon dioxide (CO2) to carbon monoxide (CO) is a favorable approach to reduce CO2 emission while converting excess sustainable energy to important chemical feedstocks. At high current density (>100 mA cm(-2)), low energy efficiency (EE) and unaffordable cell cost limit the industrial application of conventional CO2 electrolyzers. Thus, a crucial and urgent task is to design a new type of CO2 electrolyzer that can work efficiently at high current density. Here we report a polymer-supported liquid layer (PSL) electrolyzer using polypropylene non-woven fabric as a separator between anode and cathode. Ag based cathode was fed with humid CO2 and potassium hydroxide was fed to earth-abundant NiFe-based anode. In this configuration, the PSL provided high-pH condition for the cathode reaction and reduced the cell resistance, achieving a high full cell EE over 66 % at 100 mA cm(-2).
引用
收藏
页码:639 / 644
页数:6
相关论文
共 50 条
  • [41] Catalysts for efficient electrochemical reduction of CO2 to CO
    Kenis, Paul J. A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [42] A Short Perspective on Electrochemical CO2 Reduction to CO
    Tarrago, Maxime
    Ye, Shengfa
    CHIMIA, 2020, 74 (06) : 478 - 482
  • [43] Cu nanowires for electrochemical reduction of CO2 and CO
    Raciti, David
    Wang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [44] Supported catalysts for the efficient electrochemical conversion of CO2 to CO
    Ma, Sichao
    Thorson, Michael R.
    Kenis, Paul J. A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [45] Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products
    Fan, Lei
    Xia, Chuan
    Yang, Fangqi
    Wang, Jun
    Wang, Haotian
    Lu, Yingying
    SCIENCE ADVANCES, 2020, 6 (08):
  • [46] Improve of Energy Efficiency a Tool for Reduction of CO2 Emission
    Varga, Zoltan
    Stocz, Klara Kubovics
    Rabi, Istvan
    Loerinczova, Maria
    Polakovicova, Marta
    PRES'09: 12TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, PTS 1 AND 2, 2009, 18 : 463 - +
  • [47] Reduction of CO2 emissions in the system of energy efficiency certificates
    Slezak, Anna
    PRZEMYSL CHEMICZNY, 2020, 99 (12): : 1784 - 1785
  • [48] Optimisation of the Energy Efficiency and the CO2 Reduction, for the NGL Separation
    Brahim, Ahmed Ould
    Abderafi, Souad
    PROCEEDINGS OF 2016 INTERNATIONAL RENEWABLE & SUSTAINABLE ENERGY CONFERENCE (IRSEC' 16), 2016, : 822 - 827
  • [49] Effect of diluted CO2 streams on the electrochemical reduction of CO2
    Kim, Byoungsu
    Ma, Sichao
    Jhong, Huei-Ru Molly
    Kenis, Paul J. A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [50] Potential Dependence of the Local pH in a CO2 Reduction Electrolyzer
    Henckel, Danielle A.
    Counihan, Michael J.
    Holmes, Hannah E.
    Chen, Xinyi
    Nwabara, Uzoma O.
    Verma, Sumit
    Rodriguez-Lopez, Joaquin
    Kenis, Paul J. A.
    Gewirth, Andrew A.
    ACS CATALYSIS, 2021, 11 (01) : 255 - 263