Polymer-Supported Liquid Layer Electrolyzer Enabled Electrochemical CO2 Reduction to CO with High Energy Efficiency

被引:10
|
作者
Li, Shangyu [1 ,2 ]
Ma, Yiwen [1 ,2 ]
Zhao, Tiancheng [1 ,2 ]
Li, Jiaxin [1 ,2 ]
Kang, Xinyue [1 ,2 ]
Guo, Wen [1 ,2 ]
Wen, Yunzhou [1 ,2 ]
Wang, Liping [1 ,2 ]
Wang, Yurui [3 ]
Lin, Renxing [3 ]
Li, Tiantian [3 ]
Tan, Hairen [3 ]
Peng, Huisheng [1 ,2 ]
Zhang, Bo [1 ,2 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
[2] Fudan Univ, Lab Adv Mat, Shanghai 200438, Peoples R China
[3] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; conversion; electrochemical reduction; electrolyzers; polymer-supported liquid layers; low cell voltage; CARBON-DIOXIDE; PH MEASUREMENT; ELECTROREDUCTION; CONVERSION; CATALYST;
D O I
10.1002/open.202100084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical conversion of carbon dioxide (CO2) to carbon monoxide (CO) is a favorable approach to reduce CO2 emission while converting excess sustainable energy to important chemical feedstocks. At high current density (>100 mA cm(-2)), low energy efficiency (EE) and unaffordable cell cost limit the industrial application of conventional CO2 electrolyzers. Thus, a crucial and urgent task is to design a new type of CO2 electrolyzer that can work efficiently at high current density. Here we report a polymer-supported liquid layer (PSL) electrolyzer using polypropylene non-woven fabric as a separator between anode and cathode. Ag based cathode was fed with humid CO2 and potassium hydroxide was fed to earth-abundant NiFe-based anode. In this configuration, the PSL provided high-pH condition for the cathode reaction and reduced the cell resistance, achieving a high full cell EE over 66 % at 100 mA cm(-2).
引用
收藏
页码:639 / 644
页数:6
相关论文
共 50 条
  • [21] Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2
    Sun, Jian
    Cheng, Weiguo
    Fan, Wei
    Wang, Yaohong
    Meng, Zhenying
    Zhang, Suojiang
    CATALYSIS TODAY, 2009, 148 (3-4) : 361 - 367
  • [22] Parallel experiments in electrochemical CO2 reduction enabled by standardized analytics
    Senocrate, Alessandro
    Bernasconi, Francesco
    Kraus, Peter
    Plainpan, Nukorn
    Trafkowski, Jens
    Tolle, Fabian
    Weber, Thomas
    Sauter, Ulrich
    Battaglia, Corsin
    NATURE CATALYSIS, 2024, 7 (06): : 742 - 752
  • [23] ELECTROCHEMICAL REDUCTION OF CO2
    KUHN, AT
    BRITISH CHEMICAL ENGINEERING, 1971, 16 (01): : 39 - &
  • [24] Energy efficiency and CO2 reduction in the steel industry
    Wuppermann, C. -D.
    Tardy, P.
    STAHL UND EISEN, 2009, 129 (09): : S1 - S1
  • [25] Low-Voltage Acidic CO2 Reduction Enabled by a Diaphragm-Based Electrolyzer
    Perazio, A.
    Schreiber, Moritz W.
    Creissen, C. E.
    Fontecave, M.
    CHEMELECTROCHEM, 2024, 11 (09)
  • [26] Aqueous CO2 Reduction with High Efficiency Using α-Co(OH)2-Supported Atomic Ir Electrocatalysts
    Sun, Xiaofu
    Chen, Chunjun
    Liu, Shoujie
    Hong, Song
    Zhu, Qinggong
    Qian, Qingli
    Han, Buxing
    Zhang, Jing
    Zheng, Lirong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (14) : 4669 - 4673
  • [27] ???????Polymer-Regulated Electrochemical Reduction of CO2 on Ag
    Guo, Ally
    Baumann, Avery E.
    Rus, Eric D.
    Stafford, Christopher M.
    Raciti, David
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (35): : 17355 - 17365
  • [28] Effect of solid polymer electrolyte on electrochemical reduction of CO2
    Aeshala, L. M.
    Rahman, S. U.
    Verma, A.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 94 : 131 - 137
  • [29] Efficient reduction of CO2 in a solid oxide electrolyzer
    Bidrawn, F.
    Kim, G.
    Corre, G.
    Irvine, J. T. S.
    Vohs, J. M.
    Gorte, R. J.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (09) : B167 - B170
  • [30] A Guideline to Determine Faradaic Efficiency in Electrochemical CO2 Reduction
    Dutta, Nilutpal
    Bagchi, Debabrata
    Chawla, Geetansh
    Peter, Sebastian C.
    ACS ENERGY LETTERS, 2024, 9 (01): : 323 - 328