Cardinal invariants of coset spaces

被引:9
|
作者
Ling, Xuewei [1 ]
He, Wei [1 ]
Lin, Shou [2 ]
机构
[1] Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
[2] Ningde Normal Univ, Inst Math, Ningde 352100, Fujian, Peoples R China
关键词
Topological group; Coset space; Neutral subgroup; Feathered group; Cardinal function; Metrizability; PYTKEEV PROPERTY;
D O I
10.1016/j.topol.2021.107735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A topological space X is called a coset space if X is homeomorphic to a quotient space G/H of left cosets, for some closed subgroup H of a topological group G. In this paper, we investigate the cardinal invariants of coset spaces. We first show that if H is a closed neutral subgroup of a topological group G, then Delta(G/H) = psi(G/H), w(G/H) = d(G/H) center dot chi(G/H) and w(G/H) = l(G/H) center dot chi(G/H). We also prove that if H is a closed subgroup of a feathered topological group G, then (1) w(G/H) = d(G/H) center dot chi(G/H) and w(G/H) = l(G/H) center dot chi(G/H); (2) the quotient space G/H is metrizable if and only if G/H is first-countable. At the end, we consider some applications of sp-networks in coset spaces. In particular, we show that if H is a closed neutral subgroup of a topological group G, then (1) spnw(G/H) = d(G/H) center dot sp(chi)(G/H); (2) the quotient space G/H is metrizable if and only if G/H has countable sp-character. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Coset spaces and cardinal invariants
    M. Fernández
    I. Sánchez
    M. Tkachenko
    [J]. Acta Mathematica Hungarica, 2019, 159 : 486 - 502
  • [2] COSET SPACES AND CARDINAL INVARIANTS
    Fernandez, M.
    Sanchez, I.
    Tkachenko, M.
    [J]. ACTA MATHEMATICA HUNGARICA, 2019, 159 (02) : 486 - 502
  • [3] Real double coset spaces and their invariants
    Helminck, Aloysius G.
    Schwarz, Gerald W.
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (01) : 219 - 236
  • [4] Submaximal spaces and cardinal invariants
    Corral, Cesar
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2022, 314
  • [5] CARDINAL INVARIANTS OF SPACES OF MAPPINGS
    KRIVORUC.AI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 213 (01): : 34 - 37
  • [6] NEW CARDINAL INVARIANTS FOR TOPOLOGICAL SPACES
    MEYER, PR
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 116 - &
  • [7] Cardinal invariants of monotonically normal spaces
    Gartside, PM
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1997, 77 (03) : 303 - 314
  • [8] Cardinal invariants of dually CCC spaces
    Xuan, Wei-Feng
    Song, Yan-Kui
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2021, 296
  • [9] ON CARDINAL INVARIANTS OF LINKED SYSTEMS SPACES
    MAHMOUD, T
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1995, (04): : 14 - 19
  • [10] Cardinal invariants of cellular-Lindelof spaces
    Bella, Angelo
    Spadaro, Santi
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2805 - 2811