Cardinal invariants of dually CCC spaces

被引:0
|
作者
Xuan, Wei-Feng [1 ]
Song, Yan-Kui [2 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Math, Nanjing 211815, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210046, Peoples R China
关键词
Dually CCC; Dually weakly Lindelof; Dually separable; Monotonically normal; G(delta)-diagonal; Extent; Cardinal; WEAKLY LINEARLY LINDELOF;
D O I
10.1016/j.topol.2021.107685
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We say that a space X is dually CCC (respectively, weakly Lindelof, separable) if for any neighbourhood assignment phi on X, there is a CCC (respectively, weakly Lindelof, separable) subspace Y subset of X such that phi(Y) = {phi(y) : y is an element of Y} covers X. In this paper, we mainly show that (1) A dually CCC first countable Hausdorff space has cardinality at most 2(c) and a dually weakly Lindelof first countable normal space has cardinality at most 2(c). (2) Let Y = Pi{Y-i: i <= n}, where Y-i is a scattered monotonically normal space for any i = 0, 1, ..., n. If a subspace X subset of Y is dually CCC then e(X) <= omega and a normal subspace X subset of Y is DCCC if and only if e(X) <= omega. (3) Assume 2(<c) = c. A normal dually CCC space X with chi(X) <= c has extent at most c. (4) A dually separable Hausdorff space X with a G(delta)*-diagonal has extent at most c and a dually separable regular space X with a G(delta)-diagonal has cardinality at most c. (5) A dually CCC Hausdorff space with a G(delta)-diagonal has cellularity at most c. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On cardinal invariants for CCC σ-ideals
    Reclaw, I
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) : 1173 - 1175
  • [2] Cardinal invariants of coset spaces
    Ling, Xuewei
    He, Wei
    Lin, Shou
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2021, 299
  • [3] COSET SPACES AND CARDINAL INVARIANTS
    Fernandez, M.
    Sanchez, I.
    Tkachenko, M.
    [J]. ACTA MATHEMATICA HUNGARICA, 2019, 159 (02) : 486 - 502
  • [4] Coset spaces and cardinal invariants
    M. Fernández
    I. Sánchez
    M. Tkachenko
    [J]. Acta Mathematica Hungarica, 2019, 159 : 486 - 502
  • [5] Submaximal spaces and cardinal invariants
    Corral, Cesar
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2022, 314
  • [6] CARDINAL INVARIANTS OF SPACES OF MAPPINGS
    KRIVORUC.AI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 213 (01): : 34 - 37
  • [7] NEW CARDINAL INVARIANTS FOR TOPOLOGICAL SPACES
    MEYER, PR
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 116 - &
  • [8] Cardinal invariants of monotonically normal spaces
    Gartside, PM
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1997, 77 (03) : 303 - 314
  • [9] ON CARDINAL INVARIANTS OF LINKED SYSTEMS SPACES
    MAHMOUD, T
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1995, (04): : 14 - 19
  • [10] Cardinal invariants of cellular-Lindelof spaces
    Bella, Angelo
    Spadaro, Santi
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2805 - 2811