Cardinal invariants of coset spaces

被引:9
|
作者
Ling, Xuewei [1 ]
He, Wei [1 ]
Lin, Shou [2 ]
机构
[1] Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
[2] Ningde Normal Univ, Inst Math, Ningde 352100, Fujian, Peoples R China
关键词
Topological group; Coset space; Neutral subgroup; Feathered group; Cardinal function; Metrizability; PYTKEEV PROPERTY;
D O I
10.1016/j.topol.2021.107735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A topological space X is called a coset space if X is homeomorphic to a quotient space G/H of left cosets, for some closed subgroup H of a topological group G. In this paper, we investigate the cardinal invariants of coset spaces. We first show that if H is a closed neutral subgroup of a topological group G, then Delta(G/H) = psi(G/H), w(G/H) = d(G/H) center dot chi(G/H) and w(G/H) = l(G/H) center dot chi(G/H). We also prove that if H is a closed subgroup of a feathered topological group G, then (1) w(G/H) = d(G/H) center dot chi(G/H) and w(G/H) = l(G/H) center dot chi(G/H); (2) the quotient space G/H is metrizable if and only if G/H is first-countable. At the end, we consider some applications of sp-networks in coset spaces. In particular, we show that if H is a closed neutral subgroup of a topological group G, then (1) spnw(G/H) = d(G/H) center dot sp(chi)(G/H); (2) the quotient space G/H is metrizable if and only if G/H has countable sp-character. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] SEMIGROUPS ON COSET SPACES
    MADISON, B
    [J]. DUKE MATHEMATICAL JOURNAL, 1969, 36 (01) : 61 - &
  • [32] Holography for coset spaces
    Volovich, A
    [J]. PROGRESS IN STRING THEORY AND M-THEORY, 2001, 564 : 405 - 408
  • [33] METRIZATION OF COSET SPACES
    BAGLEY, RW
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (07): : 832 - &
  • [34] Cardinal invariants in quasitopological groups
    Zhang, Jing
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2019, 265
  • [35] Cardinal invariants associated with predictors
    Kamo, S
    [J]. LOGIC COLLOQUIM '98, 2000, 13 : 280 - 295
  • [36] Cardinal invariants of closed graphs
    Francis Adams
    Jindřich Zapletal
    [J]. Israel Journal of Mathematics, 2018, 227 : 861 - 888
  • [37] CARDINAL INVARIANTS OF TOPOLOGICAL FIELDS
    SHAKHMATOV, DB
    [J]. DOKLADY AKADEMII NAUK SSSR, 1983, 271 (06): : 1332 - 1336
  • [38] Small diagonals and cardinal invariants
    Xuan, Wei-Feng
    Song, Yan-Kui
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2019, 265
  • [39] Partition calculus and cardinal invariants
    Garti, Shimon
    Shelah, Saharon
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (02) : 425 - 434
  • [40] COMBINATORIAL DICHOTOMIES AND CARDINAL INVARIANTS
    Raghavan, Dilip
    Todorcevic, Stevo
    [J]. MATHEMATICAL RESEARCH LETTERS, 2014, 21 (02) : 379 - 401