BOUNDS FOR THE SPECTRAL RADIUS OF NONNEGATIVE TENSORS

被引:6
|
作者
Li, Chaoqian [1 ]
Wang, Yaqiang [2 ]
Yi, Jieyi [3 ]
Li, Yaotang [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming, Peoples R China
[2] Baoji Univ Arts & Sci, Inst Math & Informat Sci, Baoji, Peoples R China
[3] Beijing Normal Univ, Math Sci Coll, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; nonnegative tensor; partitioned tensor; Perron-Frobenius theorem; bounds; PERRON-FROBENIUS THEOREM; LARGEST EIGENVALUE; APPROXIMATION; RANK-1;
D O I
10.3934/jimo.2016.12.975
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lower bounds and upper bounds for the spectral radius of a non negative tensor are provided. And it is proved that these bounds are better than the corresponding bounds in [Y. Yang, Q. Yang, Further results for Perron-Frobenius Theorem for nonnegative tensors, SIAM. J. Matrix Anal. Appl. 31 (2010), 2517-25301.
引用
收藏
页码:975 / 990
页数:16
相关论文
共 50 条
  • [31] On Some Spectral Radius Inequalities for the Hadamard Product of Nonnegative Tensors
    Xu, Yangyang
    Shao, Licai
    He, Guinan
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [32] Some new bounds on the spectral radius of nonnegative matrices
    Adam, Maria
    Aggeli, Dimitra
    Aretaki, Aikaterini
    [J]. AIMS MATHEMATICS, 2020, 5 (01): : 701 - 716
  • [33] Sharp bounds on the spectral radius of nonnegative matrices and digraphs
    Butler, Brian K.
    Siegel, Paul H.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) : 1468 - 1478
  • [34] Sharp bounds on the spectral radius of nonnegative matrices and comparison to the frobenius’ bounds
    Adam M.
    Assimakis N.
    Babouklis F.
    [J]. 1600, North Atlantic University Union, 942 Windemere Dr. NW.,, Salem, Oregon 97304, United States (14): : 423 - 434
  • [35] Characterizations of the spectral radius of nonnegative weakly irreducible tensors via a digraph
    Sun, Lizhu
    Zheng, Baodong
    Wei, Yimin
    Bu, Changjiang
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (04): : 737 - 744
  • [36] Brauer Upper Bound for the Z-Spectral Radius of Nonnegative Tensors
    Jun HE
    Hua KE
    Yanmin LIU
    Junkang TIAN
    [J]. Journal of Mathematical Research with Applications, 2019, 39 (04) : 353 - 360
  • [37] TIGHT BOUNDS ON THE SPECTRAL-RADIUS OF ASYMMETRIC NONNEGATIVE MATRICES
    SCHWENK, AJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 75 : 257 - 265
  • [38] SIMPLIFICATIONS OF THE OSTROWSKI UPPER BOUNDS FOR THE SPECTRAL RADIUS OF NONNEGATIVE MATRICES
    Li, Chaoqian
    Hu, Baohua
    Li, Yaotang
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 237 - 249
  • [39] Bounds for the spectral radius of nonnegative matrices and generalized Fibonacci matrices
    Adam, Maria
    Aretaki, Aikaterini
    [J]. SPECIAL MATRICES, 2022, 10 (01): : 308 - 326
  • [40] Sequences of lower and upper bounds for the spectral radius of a nonnegative matrix
    Adam, Maria
    Oikonomou, Iro
    Aretaki, Aikaterini
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 667 : 165 - 191