Characterizations of the spectral radius of nonnegative weakly irreducible tensors via a digraph

被引:5
|
作者
Sun, Lizhu [1 ]
Zheng, Baodong [1 ]
Wei, Yimin [2 ]
Bu, Changjiang [3 ]
机构
[1] Harbin Inst Technol, Sch Sci, Harbin 150006, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Harbin Engn Univ, Coll Automat, Coll Sci, Harbin, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 04期
基金
中国国家自然科学基金;
关键词
nonnegative tensor; spectral radius; digraph; k-uniform hypergraph; PERRON-FROBENIUS THEOREM; EIGENVALUES;
D O I
10.1080/03081087.2015.1120702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a nonnegative weakly irreducible tensor A, we give some characterizations of the spectral radius of A, by using the digraph associated with the tensor A. As applications, some bounds on the spectral radius of the adjacency tensor and the signless Laplacian tensor of a k-uniform hypergraph are obtained.
引用
收藏
页码:737 / 744
页数:8
相关论文
共 50 条
  • [1] An algorithm for the spectral radius of weakly essentially irreducible nonnegative tensors
    Guimin Liu
    Hongbin Lv
    [J]. Calcolo, 2024, 61
  • [2] Sharp bounds for spectral radius of nonnegative weakly irreducible tensors
    You, Lihua
    Huang, Xiaohua
    Yuan, Xiying
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (05) : 989 - 1015
  • [3] An algorithm for the spectral radius of weakly essentially irreducible nonnegative tensors
    Liu, Guimin
    Lv, Hongbin
    [J]. CALCOLO, 2024, 61 (01)
  • [4] Sharp bounds for spectral radius of nonnegative weakly irreducible tensors
    Lihua You
    Xiaohua Huang
    Xiying Yuan
    [J]. Frontiers of Mathematics in China, 2019, 14 : 989 - 1015
  • [5] Power Function Method for Finding the Spectral Radius of Weakly Irreducible Nonnegative Tensors
    Liu, Panpan
    Liu, Guimin
    Lv, Hongbin
    [J]. SYMMETRY-BASEL, 2022, 14 (10):
  • [6] Geometric simplicity of spectral radius of nonnegative irreducible tensors
    Yuning Yang
    Qingzhi Yang
    [J]. Frontiers of Mathematics in China, 2013, 8 : 129 - 140
  • [7] Geometric simplicity of spectral radius of nonnegative irreducible tensors
    Yang, Yuning
    Yang, Qingzhi
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (01) : 129 - 140
  • [8] Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors
    Wang, Gang
    Wang, Yanan
    Wang, Yiju
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09): : 1817 - 1834
  • [9] Eigenvariety of nonnegative symmetric weakly irreducible tensors associated with spectral radius and its application to hypergraphs
    Fan, Yi-Zheng
    Bao, Yan-Hong
    Huang, Tao
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 564 : 72 - 94
  • [10] THE SPECTRAL SYMMETRY OF WEAKLY IRREDUCIBLE NONNEGATIVE TENSORS AND CONNECTED HYPERGRAPHS
    Fan, Yi-Zheng
    Huang, Tao
    Bao, Yan-Hong
    Zhuan-Sun, Chen-Lu
    Li, Ya-Ping
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 2213 - 2233