A q-Virasoro algebra at roots of unity, free fermions, and Temperley-Lieb hamiltonians

被引:3
|
作者
Nigro, Alessandro [1 ,2 ]
机构
[1] Univ Milano 1, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[2] Univ Milano 1, INFN, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
关键词
CONSTRUCTION;
D O I
10.1063/1.4945084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we consider the q-deformation of the Virasoro algebra [M. Chaichian and P. Presnajder, Phys. Lett. B 277, 109 (1992)] expressed in terms of free fermions, and we then realize this algebra, when the deformation parameter is a root of unity, on the lattice in a truncated form in terms of the Clifford algebra of Gamma matrices. For this finite size truncation, the commutation relations of the Deformed algebra hold exactly albeit without central extension term. We then study the relations existing between this lattice truncation of the deformed Virasoro algebra at roots of unity and the tower of commuting Temperley-Lieb hamiltonians introduced in a previous work. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] THE TEMPERLEY-LIEB ALGEBRA AT ROOTS OF UNITY
    GOODMAN, FM
    WENZL, H
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1993, 161 (02) : 307 - 334
  • [2] CALCULATIONS WITH THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 571 - 591
  • [3] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    [J]. MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345
  • [4] Meanders and the Temperley-Lieb algebra
    P. Di Francesco
    O. Golinelli
    E. Guitter
    [J]. Communications in Mathematical Physics, 1997, 186 (1) : 1 - 59
  • [5] Meanders and the Temperley-Lieb algebra
    DiFrancesco, P
    Golinelli, O
    Guitter, E
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 1 - 59
  • [6] THE MODULAR TEMPERLEY-LIEB ALGEBRA
    Spencer, Robert A.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 177 - 208
  • [7] The Fibonacci Model and the Temperley-Lieb Algebra
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    [J]. QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [8] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (29): : 5065 - 5080
  • [9] Exact solutions of graded Temperley-Lieb Hamiltonians
    Lima-Santos, A
    [J]. NUCLEAR PHYSICS B, 1998, 522 (03) : 503 - 532
  • [10] THE BLOB ALGEBRA AND THE PERIODIC TEMPERLEY-LIEB ALGEBRA
    MARTIN, P
    SALEUR, H
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1994, 30 (03) : 189 - 206