Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application

被引:10
|
作者
Sahoo, Soubhagya Kumar [1 ]
Jarad, Fahd [2 ,3 ,4 ]
Kodamasingh, Bibhakar [1 ]
Kashuri, Artion [5 ]
机构
[1] Siksha O Anusandhan Univ, Inst Tech Educ & Res, Dept Math, Bhubaneswar 751030, India
[2] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[3] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Univ Ismail Qemali, Fac Tech Sci, Dept Math, Vlora 9400, Albania
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 07期
关键词
convex functions; Hermite-Hadamard inequality; Atangana-Baleanu fractional integral operators; Young inequality; Jensen's inequality; INTEGRAL-INEQUALITIES; CONVEX-FUNCTIONS;
D O I
10.3934/math.2022683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Defining new fractional operators and employing them to establish well-known integral inequalities has been the recent trend in the theory of mathematical inequalities. To take a step forward, we present novel versions of Hermite-Hadamard type inequalities for a new fractional operator, which generalizes some well-known fractional integral operators. Moreover, a midpoint type fractional integral identity is derived for differentiable mappings, whose absolute value of the first-order derivatives are convex functions. Moreover, considering this identity as an auxiliary result, several improved inequalities are derived using some fundamental inequalities such as Holder-Iscan, Jensen and Young inequality. Also, if we take the parameter rho = 1 in most of the results, we derive new results for Atangana-Baleanu equivalence. One example related to matrices is also given as an application.
引用
收藏
页码:12303 / 12321
页数:19
相关论文
共 50 条
  • [1] Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator
    Liu, Jia-Bao
    Butt, Saad Ihsan
    Nasir, Jamshed
    Aslam, Adnan
    Fahad, Asfand
    Soontharanon, Jarunee
    AIMS MATHEMATICS, 2022, 7 (02): : 2123 - 2140
  • [2] On New Generalizations of Hermite-Hadamard Type Inequalities via Atangana-Baleanu Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Karaoglan, Ali
    Abdeljawad, Thabet
    Shatanawi, Wasfi
    AXIOMS, 2021, 10 (03)
  • [3] Hermite-Hadamard-Type Inequalities Involving Harmonically Convex Function via the Atangana-Baleanu Fractional Integral Operator
    Latif, Muhammad Amer
    Kalsoom, Humaira
    Abidin, Muhammad Zainul
    SYMMETRY-BASEL, 2022, 14 (09):
  • [4] Generalized AB-Fractional Operator Inclusions of Hermite-Hadamard's Type via Fractional Integration
    Bin-Mohsin, Bandar
    Awan, Muhammad Uzair
    Javed, Muhammad Zakria
    Khan, Awais Gul
    Budak, Huseyin
    Mihai, Marcela V.
    Noor, Muhammad Aslam
    SYMMETRY-BASEL, 2023, 15 (05):
  • [5] GENERALIZED HERMITE-HADAMARD INCLUSIONS FOR A GENERALIZED FRACTIONAL INTEGRAL
    Budak, Hueseyin
    Kara, Hasan
    Hezenci, Fatih
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (02) : 383 - 395
  • [6] Applications of the Atangana-Baleanu Fractional Integral Operator
    Lupas, Alina Alb
    Catas, Adriana
    SYMMETRY-BASEL, 2022, 14 (03):
  • [7] On Hermite-Hadamard type inequalities via generalized fractional integrals
    Jleli, Mohamed
    O'Regan, Donal
    Samet, Bessem
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (06) : 1221 - 1230
  • [8] Jensen-Mercer variant of Hermite-Hadamard type inequalities via generalized fractional operator
    Butt, Saad Ihsan
    Nadeem, Mehroz
    Nasir, Jamshed
    Akdemir, Ahmet Ocak
    Orujova, Malahat Sh.
    FILOMAT, 2024, 38 (29) : 10463 - 10483
  • [9] ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR
    Yaldiz, H.
    Sarikaya, M. Z.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (03): : 369 - 378
  • [10] Fractional view analysis of the diffusion equations via a natural Atangana-Baleanu operator
    Jan, Himayat Ullah
    Ullah, Hakeem
    Fiza, Mehreen
    Khan, Ilyas
    Eldin, Sayed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 83 : 19 - 26