An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement

被引:57
|
作者
Li, Teng [1 ]
Rezaeipanah, Amin [2 ]
El Din, ElSayed M. Tag [3 ]
机构
[1] Chongqing Coll Elect Engn, Artificial Intelligence & Big Data Coll, Chongqing 401331, Peoples R China
[2] Persian Gulf Univ, Dept Comp Engn, Bushehr, Iran
[3] Future Univ Egypt, Fac Engn & Technol, Elect Engn Dept, New Cairo 11845, Egypt
关键词
Hierarchical clustering; Meta-clusters; Ensemble clustering; Model selection; Similarity measurement; Clusters clustering; WEIGHTED ENSEMBLE; DENSITY;
D O I
10.1016/j.jksuci.2022.04.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of architectures such as the Internet of Things (IoT) has led to the dramatic growth of data and the production of big data. Managing this often-unlabeled data is a big challenge for the real world. Hierarchical Clustering (HC) is recognized as an efficient unsupervised approach to unlabeled data analysis. In data mining, HC is a mechanism for grouping data at different scales by creating a dendrogram. One of the most common HC methods is Agglomerative Hierarchical Clustering (AHC) in which clusters are created bottom-up. In addition, ensemble clustering approaches are used today in complex problems due to the weakness of individual clustering methods. Accordingly, we propose a clustering framework using AHC methods based on ensemble approaches, which includes the clusters clustering technique and a novel similarity measurement. The proposed algorithm is a Meta-Clustering Ensemble scheme based on Model Selection (MCEMS). MCEMS uses the bi-weighting policy to solve the model selection associated problem to improve ensemble clustering. Specifically, multiple AHC individual methods cluster the data from different aspects to form the primary clusters. According to the results of different methods, the similarity between the instances is calculated using a novel similarity measurement. The MCEMS scheme involves the creation of meta-clusters by re-clustering of primary clusters. After clusters clustering, the number of optimal clusters is determined by merging similar clusters and considering a threshold. Finally, the similarity of the instances to the meta-clusters is calculated and each instance is assigned to the meta-cluster with the highest similarity to form the final clusters. Simulations have been performed on some datasets from the UCI repository to evaluate MCEMS scheme compared to state-of-the-art algorithms. Extensive experiments clearly prove the superiority of MCEMS over HMM, DSPA and WHAC algorithms based on Wilcoxon test and Cophenetic correlation coefficient. (C) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页码:3828 / 3842
页数:15
相关论文
共 50 条
  • [41] A Boltzmann Theory Based Dynamic Agglomerative Hierarchical Clustering
    Li, Gang
    Zhuang, Jian
    Hou, Hongning
    Yu, Dehong
    IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, 2009, : 96 - 101
  • [42] Hierarchical Clustering Algorithm for Binary Data Based on Cosine Similarity
    Gao, Xiaonan
    Wu, Sen
    2018 8TH INTERNATIONAL CONFERENCE ON LOGISTICS, INFORMATICS AND SERVICE SCIENCES (LISS), 2018,
  • [43] Agglomerative hierarchical clustering for data with tolerance
    Yasunori, Endo
    Yukihiro, Hamasuna
    Sadaaki, Miyamoto
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 404 - 409
  • [44] Agglomerative Hierarchical Clustering Using Asymmetric Similarity Based on a Bag Model and Application to Information on the Web
    Takumi, Satoshi
    Miyamoto, Sadaaki
    INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, 2011, 7027 : 187 - +
  • [45] Hierarchical subtrees agglomerative clustering algorithms
    Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China
    Beijing Gongye Daxue Xuebao J. Beijing Univ. Technol., 2006, 5 (442-446):
  • [46] Fair Algorithms for Hierarchical Agglomerative Clustering
    Chhabra, Anshuman
    Mohapatra, Prasant
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 206 - 211
  • [47] Agglomerative and divisive hierarchical Bayesian clustering
    Burghardt, Elliot
    Sewell, Daniel
    Cavanaugh, Joseph
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [48] A Novel Approach for Climate Classification Using Agglomerative Hierarchical Clustering
    Uppalapati, Sanketh
    Garg, Vishal
    Pudi, Vikram
    Mathur, Jyotirmay
    Gupta, Raj
    Bhatia, Aviruch
    ENERGY INFORMATICS, EI.A 2023, PT I, 2024, 14467 : 152 - 167
  • [49] Geometric algorithms for agglomerative hierarchical clustering
    Chen, DZ
    Xu, B
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2003, 2697 : 30 - 39
  • [50] Order preserving hierarchical agglomerative clustering
    Bakkelund, Daniel
    MACHINE LEARNING, 2022, 111 (05) : 1851 - 1901