Multilevel Monte Carlo front-tracking for random scalar conservation laws

被引:9
|
作者
Risebro, Nils Henrik [1 ]
Schwab, Christoph [2 ]
Weber, Franziska [1 ]
机构
[1] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
[2] ETH, ETH Zentrum HG G 57 1, Seminar Appl Math, Ramistr 101, Zurich, Switzerland
关键词
Conservation laws; Random flux; Front tracking; Monte Carlo method; FINITE-VOLUME METHODS; BURGERS-EQUATION; SYSTEMS;
D O I
10.1007/s10543-015-0550-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider random scalar hyperbolic conservation laws in spatial dimension with bounded random flux functions which are Lipschitz continuous with respect to the state variable, for which there exists a unique random entropy solution. We present a convergence analysis of a multilevel Monte Carlo front-tracking algorithm. It is based on "pathwise" application of the front-tracking method for deterministic conservation laws. Due to the first order convergence of front tracking, we obtain an improved complexity estimate in one space dimension.
引用
收藏
页码:263 / 292
页数:30
相关论文
共 50 条