Multilevel Monte Carlo front-tracking for random scalar conservation laws

被引:9
|
作者
Risebro, Nils Henrik [1 ]
Schwab, Christoph [2 ]
Weber, Franziska [1 ]
机构
[1] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
[2] ETH, ETH Zentrum HG G 57 1, Seminar Appl Math, Ramistr 101, Zurich, Switzerland
关键词
Conservation laws; Random flux; Front tracking; Monte Carlo method; FINITE-VOLUME METHODS; BURGERS-EQUATION; SYSTEMS;
D O I
10.1007/s10543-015-0550-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider random scalar hyperbolic conservation laws in spatial dimension with bounded random flux functions which are Lipschitz continuous with respect to the state variable, for which there exists a unique random entropy solution. We present a convergence analysis of a multilevel Monte Carlo front-tracking algorithm. It is based on "pathwise" application of the front-tracking method for deterministic conservation laws. Due to the first order convergence of front tracking, we obtain an improved complexity estimate in one space dimension.
引用
收藏
页码:263 / 292
页数:30
相关论文
共 50 条
  • [21] Towards front-tracking based on conservation in two space dimensions II, tracking discontinuities in capturing fashion
    De-Kang, Mao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) : 1550 - 1588
  • [22] A finite volume multilevel WENO scheme for multidimensional scalar conservation laws
    Arbogast, Todd
    Huang, Chieh-Sen
    Tian, Chenyu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [23] Numerical Solution of Scalar Conservation Laws with Random Flux Functions
    Mishra, Siddhartha
    Risebro, Nils Henrik
    Schwab, Christoph
    Tokareva, Svetlana
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 552 - 591
  • [24] A new Monte Carlo approach for conservation laws and relaxation systems
    Pareschi, L
    Seaïd, M
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 276 - 283
  • [25] FRONT TRACKING FOR A 2 x 2 SYSTEM OF CONSERVATION LAWS
    Baiti, Paolo
    Dal Santo, Edda
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [26] EMBEDDED MULTILEVEL MONTE CARLO FOR UNCERTAINTY QUANTIFICATION IN RANDOM DOMAINS
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (01) : 119 - 142
  • [27] A FRONT TRACKING METHOD FOR CONSERVATION-LAWS IN ONE DIMENSION
    RISEBRO, NH
    TVEITO, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 101 (01) : 130 - 139
  • [28] A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs
    Luo, Yan
    Wang, Zhu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A622 - A642
  • [29] A SIMPLE APPROXIMATE RANDOM CHOICE METHOD FOR SCALAR CONSERVATION-LAWS
    COHEN, JS
    LAVITA, JA
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (04): : 1350 - 1359
  • [30] Multilevel Monte Carlo Simulation of the Eddy Current Problem With Random Parameters
    Galetzka, Armin
    Bontinck, Zeger
    Romer, Ulrich
    Schops, Sebastian
    2017 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - ITALY (ACES), 2017,