Multilevel Monte Carlo front-tracking for random scalar conservation laws

被引:9
|
作者
Risebro, Nils Henrik [1 ]
Schwab, Christoph [2 ]
Weber, Franziska [1 ]
机构
[1] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
[2] ETH, ETH Zentrum HG G 57 1, Seminar Appl Math, Ramistr 101, Zurich, Switzerland
关键词
Conservation laws; Random flux; Front tracking; Monte Carlo method; FINITE-VOLUME METHODS; BURGERS-EQUATION; SYSTEMS;
D O I
10.1007/s10543-015-0550-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider random scalar hyperbolic conservation laws in spatial dimension with bounded random flux functions which are Lipschitz continuous with respect to the state variable, for which there exists a unique random entropy solution. We present a convergence analysis of a multilevel Monte Carlo front-tracking algorithm. It is based on "pathwise" application of the front-tracking method for deterministic conservation laws. Due to the first order convergence of front tracking, we obtain an improved complexity estimate in one space dimension.
引用
收藏
页码:263 / 292
页数:30
相关论文
共 50 条
  • [1] Multilevel Monte Carlo front-tracking for random scalar conservation laws
    Nils Henrik Risebro
    Christoph Schwab
    Franziska Weber
    BIT Numerical Mathematics, 2016, 56 : 263 - 292
  • [2] Correction to: Multilevel Monte Carlo front-tracking for random scalar conservation laws
    Nils Henrik Risebro
    Christoph Schwab
    Franziska Weber
    BIT Numerical Mathematics, 2018, 58 : 247 - 255
  • [3] Multilevel Monte Carlo front-tracking for random scalar conservation laws (vol 56, pg 263, 2016)
    Risebro, Nils Henrik
    Schwab, Christoph
    Weber, Franziska
    BIT NUMERICAL MATHEMATICS, 2018, 58 (01) : 247 - 255
  • [4] A Conservative Front-Tracking Method for Scalar Conservation Laws in One Space Dimension with Nonconvex Flux
    Hu, Jingting
    Mao, Dekang
    SYSTEM SIMULATION AND SCIENTIFIC COMPUTING, PT II, 2012, 327 : 79 - +
  • [5] A posteriori error estimate for front-tracking: Systems of conservation laws
    Laforest, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (05) : 1347 - 1370
  • [6] Multilevel Monte Carlo Finite Difference Methods for Fractional Conservation Laws with Random Data
    Koley, Ujjwal
    Ray, Deep
    Sarkar, Tanmay
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01): : 65 - 105
  • [7] Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux
    Badwaik, Jayesh
    Klingenberg, Christian
    Risebro, Nils Henrik
    Ruf, Adrian M.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (03) : 1039 - 1065
  • [8] Convergence of a particle Monte Carlo algorithm for scalar conservation laws
    Towers, John D.
    MONTE CARLO METHODS AND APPLICATIONS, 2025,
  • [9] ON FRONT-TRACKING METHODS APPLIED TO HYPERBOLIC SYSTEMS OF NONLINEAR CONSERVATION LAWS.
    Charrier, P.
    Tessieras, B.
    1600, (23):
  • [10] ON FRONT-TRACKING METHODS APPLIED TO HYPERBOLIC SYSTEMS OF NONLINEAR CONSERVATION-LAWS
    CHARRIER, P
    TESSIERAS, B
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (03) : 461 - 472