Equilibrium Fluctuations for a Model of Coagulating-Fragmenting Planar Brownian Particles

被引:3
|
作者
Ranjbar, Mojtaba [1 ]
Rezakhanlou, Fraydoun [2 ]
机构
[1] Amirkabir Univ, Fac Math & Comp Sci, Tehran, Iran
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
SYSTEM; LIMIT;
D O I
10.1007/s00220-010-1016-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a model of mass-bearing coagulating-fragmenting planar Brownian particles. Coagulation occurs when two particles are within a distance of order epsilon. Our model is macroscopically described by an inhomogeneous Smoluchowski's equation in the low epsilon limit provided that the initial number of particles N is of order |log epsilon|. When a detailed balance condition is satisfied, we establish a central limit theorem by showing that in the low epsilon limit, the particle density fluctuation fields obey an Ornstein-Uhlenbeck stochastic differential equation.
引用
收藏
页码:769 / 826
页数:58
相关论文
共 50 条
  • [31] Equilibrium fluctuations for interacting Ornstein-Uhlenbeck particles
    Olla, S
    Tremoulet, C
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (03) : 463 - 491
  • [32] Equilibrium Fluctuations for Interacting Ornstein-Uhlenbeck Particles
    Stefano Olla
    Christel Tremoulet
    Communications in Mathematical Physics, 2003, 233 : 463 - 491
  • [33] GENERALIZED EINSTEIN THEORY OF BROWNIAN-MOTION FOR NON-EQUILIBRIUM FLUCTUATIONS
    LAVENDA, BH
    SANTAMATO, E
    LETTERE AL NUOVO CIMENTO, 1979, 26 (16): : 505 - 510
  • [34] Equilibrium fluctuations for a discrete Atlas model
    Hernandez, Freddy
    Jara, Milton
    Valentim, Fabio Julio
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (03) : 783 - 802
  • [35] Equilibrium fluctuations for delφ interface model
    Giacomin, G
    Olla, S
    Spohn, H
    ANNALS OF PROBABILITY, 2001, 29 (03): : 1138 - 1172
  • [36] Active Brownian particles: mapping to equilibrium polymers and exact computation of moments
    Shee, Amir
    Dhar, Abhishek
    Chaudhuri, Debasish
    SOFT MATTER, 2020, 16 (20) : 4776 - 4787
  • [37] Non-equilibrium Magnetization of a Dilute Suspension of Brownian Magnetic Particles
    Tyatyushkin, Alexander
    MAGNETISM AND MAGNETIC MATERIALS V, 2012, 190 : 657 - 660
  • [38] Interacting Brownian particles as a model of neural network
    Iwasaki, I
    Nakajima, H
    Shimizu, T
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (04): : 791 - 797
  • [39] Minimal model for acoustic forces on Brownian particles
    Balboa Usabiaga, F.
    Delgado-Buscalioni, R.
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [40] Stochastic model for the dynamics of interacting Brownian particles
    Mayorga, M
    Romero-Salazar, L
    Rubí, JM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 307 (3-4) : 297 - 314