Equilibrium Fluctuations for a Model of Coagulating-Fragmenting Planar Brownian Particles

被引:3
|
作者
Ranjbar, Mojtaba [1 ]
Rezakhanlou, Fraydoun [2 ]
机构
[1] Amirkabir Univ, Fac Math & Comp Sci, Tehran, Iran
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
SYSTEM; LIMIT;
D O I
10.1007/s00220-010-1016-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a model of mass-bearing coagulating-fragmenting planar Brownian particles. Coagulation occurs when two particles are within a distance of order epsilon. Our model is macroscopically described by an inhomogeneous Smoluchowski's equation in the low epsilon limit provided that the initial number of particles N is of order |log epsilon|. When a detailed balance condition is satisfied, we establish a central limit theorem by showing that in the low epsilon limit, the particle density fluctuation fields obey an Ornstein-Uhlenbeck stochastic differential equation.
引用
收藏
页码:769 / 826
页数:58
相关论文
共 50 条
  • [21] Active Brownian particles with velocity-alignment and active fluctuations
    Grossmann, R.
    Schimansky-Geier, L.
    Romanczuk, P.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [22] Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles
    Chakraborti, Subhadip
    Mishra, Shradha
    Pradhan, Punyabrata
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [23] Diffusion Adaptation over Networks of Particles Subject to Brownian Fluctuations
    Sayed, Ali H.
    Sayed, Faten A.
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 685 - 690
  • [24] VELOCITY FLUCTUATIONS OF A BROWNIAN PARTICLE - WIDOMS MODEL
    DAVIS, HT
    SUBRAMANIAN, G
    JOURNAL OF CHEMICAL PHYSICS, 1973, 58 (11): : 5167 - 5168
  • [25] A mixed search model of Brownian particles
    Pu Cun-Lai
    Pei Wen-Jiang
    Wang Shao-Ping
    ACTA PHYSICA SINICA, 2010, 59 (01) : 103 - 110
  • [26] An efficient numerical method for a mathematical model of a transport of coagulating particles
    Zagidullin R.R.
    Smirnov A.P.
    Matveev S.A.
    Tyrtyshnikov E.E.
    Moscow University Computational Mathematics and Cybernetics, 2017, 41 (4) : 179 - 186
  • [27] Brownian particles in random and quasicrystalline potentials: How they approach the equilibrium
    M. Schmiedeberg
    J. Roth
    H. Stark
    The European Physical Journal E, 2007, 24 : 367 - 377
  • [28] Brownian particles in random and quasicrystalline potentials: How they approach the equilibrium
    Schmiedeberg, M.
    Roth, J.
    Stark, H.
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (04): : 367 - 377
  • [29] Fluctuations and first-passage properties of systems of Brownian particles with reset
    Vilk, Ohad
    Assaf, Michael
    Meerson, Baruch
    PHYSICAL REVIEW E, 2022, 106 (02)
  • [30] DYNAMICS OF NUMBER FLUCTUATIONS OF BROWNIAN PARTICLES BY INTENSITY AUTO-CORRELATION
    BRIGGS, J
    PHYSICAL REVIEW A, 1981, 24 (04): : 2265 - 2268