Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing

被引:201
|
作者
Hong, Danfeng [1 ,2 ,3 ]
He, Wei [4 ]
Yokoya, Naoto [5 ,6 ,7 ,8 ]
Yao, Jing [8 ,9 ,10 ]
Gao, Lianru [9 ,11 ,12 ]
Zhang, Liangpei [13 ,14 ,15 ]
Chanussot, Jocelyn [16 ,17 ,18 ,19 ,20 ,21 ,22 ]
Zhu, Xiaoxiang [5 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ]
机构
[1] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Oberpfaffenhofen, Germany
[2] IMF DLR, Spectral Vis Working Grp, Oberpfaffenhofen, Germany
[3] Univ Grenoble Alpes, French Natl Ctr Sci Res, Grenoble Inst Technol, GIPSA Lab, F-38000 Grenoble, France
[4] RIKEN, Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[5] Univ Tokyo, Tokyo 1030027, Japan
[6] RIKEN, Ctr Adv Intelligence Project, Geoinformat Unit, Tokyo 1030027, Japan
[7] German Aerosp Ctr, Oberpfaffenhofen, Germany
[8] Tech Univ Munich, Munich, Germany
[9] Chinese Acad Sci, Key Lab Digital Earth Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[10] German Aerosp Ctr, Remote Sensing Technol Inst, Oberpfaffenhofen, Germany
[11] Univ Extremadura, Caceres, Spain
[12] Mississippi State Univ, Starkville, MS USA
[13] Wuhan Univ, Minist Educ China, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R China
[14] China State Key Basic Res Project, Beijing, Peoples R China
[15] Minist Natl Sci & Technol China, Remote Sensing Program China, Beijing, Peoples R China
[16] Grenoble INP, Grenoble, France
[17] Univ Iceland, Reykjavik, Iceland
[18] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[19] Stanford Univ, Stanford, CA 94305 USA
[20] Royal Inst Technol, Stockholm, Sweden
[21] Natl Univ Singapore, Singapore, Singapore
[22] Univ Calif Los Angeles, Los Angeles, CA USA
[23] TUM, Data Sci Earth Observat EO, Munich, Germany
[24] German Aerosp Ctr DLR, Remote Sensing Technol Inst, Signal Proc EO, Oberpfaffenhofen, Germany
[25] German Aerosp Ctr DLR, Remote Sensing Technol Inst, EO Data Sci Dept, Oberpfaffenhofen, Germany
[26] Munich Data Sci Res Sch, Munich, Germany
[27] Helmholtz Artificial Intelligence Res Field Aeron, Wessling, Germany
[28] Int Future Artificial Intelligence Lab Artificial, D-80333 Munich, Germany
[29] TUM, Munich Data Sci Inst, D-80333 Munich, Germany
[30] Italian Natl Res Council, Naples, Italy
[31] Fudan Univ, Shanghai, Peoples R China
[32] Berlin Brandenburg Acad Sci & Humanities, Junges Kolleg, Young Acad, Berlin, Germany
[33] German Natl Acad Sci Leopoldina, Halle, Germany
[34] Bavarian Acad Sci & Humanities, Munich, Germany
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Imaging; Artificial intelligence; Data models; Analytical models; Two dimensional displays; Task analysis; Earth; NONLINEAR DIMENSIONALITY REDUCTION; NONNEGATIVE MATRIX FACTORIZATION; LOW-RANK GRAPH; DISCRIMINANT-ANALYSIS; MULTISPECTRAL DATA; NEURAL-NETWORK; IMAGE-RESTORATION; SPARSE; ALGORITHM; SUPERRESOLUTION;
D O I
10.1109/MGRS.2021.3064051
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these HS products, mainly by seasoned experts. However, with an ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges for reducing the burden of manual labor and improving efficiency. For this reason, it is urgent that more intelligent and automatic approaches for various HS RS applications be developed. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications; however, their ability to handle complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher-dimensional HS signals. Compared to convex models, nonconvex modeling, which is capable of characterizing more complex real scenes and providing model interpretability technically and theoretically, has proven to be a feasible solution that reduces the gap between challenging HS vision tasks and currently advanced intelligent data processing models.
引用
收藏
页码:52 / 87
页数:36
相关论文
共 50 条
  • [41] Consideration of smoothing techniques for hyperspectral remote sensing
    Vaiphasa, C
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2006, 60 (02) : 91 - 99
  • [42] ROMAN CENTURIE RECONSTRUCTED BY HYPERSPECTRAL REMOTE SENSING
    Merola, Pasquale
    STUDIJNE ZVESTI ARCHEOLOGICKEHO USTAVU SLOVENSKEJ AKADEMIE VIED, 2007, 41 : 217 - 219
  • [43] Multimodal hyperspectral remote sensing: an overview and perspective
    Yanfeng Gu
    Tianzhu Liu
    Guoming Gao
    Guangbo Ren
    Yi Ma
    Jocelyn Chanussot
    Xiuping Jia
    Science China Information Sciences, 2021, 64
  • [44] Signal and Image Processing in Hyperspectral Remote Sensing
    Ma, Wing-Kin
    Bioucas-Dias, Jose M.
    Chanussot, Jocelyn
    Gader, Paul
    IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) : 22 - 23
  • [45] Multimodal hyperspectral remote sensing: an overview and perspective
    Gu, Yanfeng
    Liu, Tianzhu
    Gao, Guoming
    Ren, Guangbo
    Ma, Yi
    Chanussot, Jocelyn
    Jia, Xiuping
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (02)
  • [46] Hyperspectral remote sensing of vegetation and agricultural crops
    Thenkabail, Prasad S.
    Gumma, Murali Krishna
    Teluguntla, Pardhasaradhi
    Ahmed, Mohammed Irshad
    Photogrammetric Engineering and Remote Sensing, 2013, 79 (09):
  • [47] Hyperspectral remote sensing of wild oyster reefs
    Le Bris, Anthony
    Rosa, Philippe
    Lerouxel, Astrid
    Cognie, Bruno
    Gernez, Pierre
    Launeau, Patrick
    Robin, Marc
    Barille, Laurent
    ESTUARINE COASTAL AND SHELF SCIENCE, 2016, 172 : 1 - 12
  • [48] Current progress of hyperspectral remote sensing in China
    Tong Q.
    Zhang B.
    Zhang L.
    Yaogan Xuebao/Journal of Remote Sensing, 2016, 20 (05): : 689 - 707
  • [49] Hyperspectral remote sensing of peatland floristic gradients
    Harris, A.
    Charnock, R.
    Lucas, R. M.
    REMOTE SENSING OF ENVIRONMENT, 2015, 162 : 99 - 111
  • [50] Utilizing Hyperspectral Remote Sensing for Soil Gradation
    Ewing, Jordan
    Oommen, Thomas
    Jayakumar, Paramsothy
    Alger, Russell
    REMOTE SENSING, 2020, 12 (20) : 1 - 13