Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing

被引:201
|
作者
Hong, Danfeng [1 ,2 ,3 ]
He, Wei [4 ]
Yokoya, Naoto [5 ,6 ,7 ,8 ]
Yao, Jing [8 ,9 ,10 ]
Gao, Lianru [9 ,11 ,12 ]
Zhang, Liangpei [13 ,14 ,15 ]
Chanussot, Jocelyn [16 ,17 ,18 ,19 ,20 ,21 ,22 ]
Zhu, Xiaoxiang [5 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ]
机构
[1] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Oberpfaffenhofen, Germany
[2] IMF DLR, Spectral Vis Working Grp, Oberpfaffenhofen, Germany
[3] Univ Grenoble Alpes, French Natl Ctr Sci Res, Grenoble Inst Technol, GIPSA Lab, F-38000 Grenoble, France
[4] RIKEN, Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[5] Univ Tokyo, Tokyo 1030027, Japan
[6] RIKEN, Ctr Adv Intelligence Project, Geoinformat Unit, Tokyo 1030027, Japan
[7] German Aerosp Ctr, Oberpfaffenhofen, Germany
[8] Tech Univ Munich, Munich, Germany
[9] Chinese Acad Sci, Key Lab Digital Earth Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[10] German Aerosp Ctr, Remote Sensing Technol Inst, Oberpfaffenhofen, Germany
[11] Univ Extremadura, Caceres, Spain
[12] Mississippi State Univ, Starkville, MS USA
[13] Wuhan Univ, Minist Educ China, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R China
[14] China State Key Basic Res Project, Beijing, Peoples R China
[15] Minist Natl Sci & Technol China, Remote Sensing Program China, Beijing, Peoples R China
[16] Grenoble INP, Grenoble, France
[17] Univ Iceland, Reykjavik, Iceland
[18] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[19] Stanford Univ, Stanford, CA 94305 USA
[20] Royal Inst Technol, Stockholm, Sweden
[21] Natl Univ Singapore, Singapore, Singapore
[22] Univ Calif Los Angeles, Los Angeles, CA USA
[23] TUM, Data Sci Earth Observat EO, Munich, Germany
[24] German Aerosp Ctr DLR, Remote Sensing Technol Inst, Signal Proc EO, Oberpfaffenhofen, Germany
[25] German Aerosp Ctr DLR, Remote Sensing Technol Inst, EO Data Sci Dept, Oberpfaffenhofen, Germany
[26] Munich Data Sci Res Sch, Munich, Germany
[27] Helmholtz Artificial Intelligence Res Field Aeron, Wessling, Germany
[28] Int Future Artificial Intelligence Lab Artificial, D-80333 Munich, Germany
[29] TUM, Munich Data Sci Inst, D-80333 Munich, Germany
[30] Italian Natl Res Council, Naples, Italy
[31] Fudan Univ, Shanghai, Peoples R China
[32] Berlin Brandenburg Acad Sci & Humanities, Junges Kolleg, Young Acad, Berlin, Germany
[33] German Natl Acad Sci Leopoldina, Halle, Germany
[34] Bavarian Acad Sci & Humanities, Munich, Germany
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Imaging; Artificial intelligence; Data models; Analytical models; Two dimensional displays; Task analysis; Earth; NONLINEAR DIMENSIONALITY REDUCTION; NONNEGATIVE MATRIX FACTORIZATION; LOW-RANK GRAPH; DISCRIMINANT-ANALYSIS; MULTISPECTRAL DATA; NEURAL-NETWORK; IMAGE-RESTORATION; SPARSE; ALGORITHM; SUPERRESOLUTION;
D O I
10.1109/MGRS.2021.3064051
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these HS products, mainly by seasoned experts. However, with an ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges for reducing the burden of manual labor and improving efficiency. For this reason, it is urgent that more intelligent and automatic approaches for various HS RS applications be developed. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications; however, their ability to handle complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher-dimensional HS signals. Compared to convex models, nonconvex modeling, which is capable of characterizing more complex real scenes and providing model interpretability technically and theoretically, has proven to be a feasible solution that reduces the gap between challenging HS vision tasks and currently advanced intelligent data processing models.
引用
收藏
页码:52 / 87
页数:36
相关论文
共 50 条
  • [31] Comparison of swarm intelligence algorithms for optimized band selection of hyperspectral remote sensing image
    Ding Xiaohui
    Li Huapeng
    Li Yong
    Yang Ji
    Zhang Shuqing
    OPEN GEOSCIENCES, 2020, 12 (01) : 425 - 442
  • [32] IMPROVED DISCRETE SWARM INTELLIGENCE ALGORITHMS FOR ENDMEMBER EXTRACTION IN HYPERSPECTRAL REMOTE SENSING IMAGE
    Su, Yuanchao
    Sun, Xu
    Gao, Lianru
    Li, Jun
    Zhang, Bing
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [33] A DBN for Hyperspectral Remote Sensing Image Classification
    Tong Guofeng
    Li Yong
    Cao Lihao
    Jin Chen
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 1757 - 1762
  • [34] Development and application of hyperspectral remote sensing in China
    Tong, QX
    Zheng, LF
    Xue, YQ
    HYPERSPECTRAL REMOTE SENSING AND APPLICATIONS, 1998, 3502 : 2 - 9
  • [35] Special issue on hyperspectral remote sensing - Foreword
    Staenz, Karl
    CANADIAN JOURNAL OF REMOTE SENSING, 2008, 34 : III - III
  • [36] Hyperspectral remote sensing for light pollution monitoring
    Barducci, Alessandro
    Benvenuti, Marco
    Bonora, Laura
    Castagnoli, Francesco
    Guzzi, Donatella
    Marcoionni, Paolo
    Pippi, Ivan
    ANNALS OF GEOPHYSICS, 2006, 49 (01) : 305 - 310
  • [37] QUANTUM DEEP HYPERSPECTRAL SATELLITE REMOTE SENSING
    Lin, Chia-Hsiang
    Chen, You-Yao
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7316 - 7319
  • [38] Development and application of hyperspectral remote sensing in China
    Tong, QX
    Zheng, LF
    Xue, YQ
    OPTICAL REMOTE SENSING OF THE ATMOSPHERE AND CLOUDS, 1998, 3501 : 34 - 41
  • [39] Hyperspectral Image Analysis techniques on Remote Sensing
    Iyer, R. Priyanka
    Raveendran, Archanaa
    Bhuvana, S. K. Thai
    Kavitha, R.
    2017 IEEE 3RD INTERNATIONAL CONFERENCE ON SENSING, SIGNAL PROCESSING AND SECURITY (ICSSS), 2017, : 392 - 396
  • [40] The development of Chinese hyperspectral remote sensing technology
    Wang, JY
    Shu, R
    Xue, YQ
    INFRARED COMPONENTS AND THEIR APPLICATIONS, 2005, 5640 : 358 - 367