Modeling Neonatal EEG Using Multi-Output Gaussian Processes

被引:2
|
作者
Caro, Victor [1 ,2 ]
Ho, Jou-Hui [3 ]
Witting, Scarlet [4 ,5 ]
Tobar, Felipe [1 ,6 ]
机构
[1] Univ Chile, Initiat Data & Artificial Intelligence, Santiago 8370456, Chile
[2] Univ Chile, Dept Comp Sci, Santiago 8370456, Chile
[3] Univ Chile, Dept Elect Engn, Santiago 8370448, Chile
[4] Hosp Clin San Borja Arriaran, Pediat Neurol, Santiago 8360160, Chile
[5] Univ Chile, Fac Med, Pediat Dept, Cent Campus, Santiago 8380453, Chile
[6] Univ Chile, Ctr Math Modelling, Santiago 8370456, Chile
关键词
Electroencephalography; Pediatrics; Brain modeling; Kernel; Gaussian processes; Data models; Artificial neural networks; multi-output; data imputation; seizure detection; spectral mixture kernels; SEIZURE DETECTION; NEWBORN EEG; CLASSIFICATION;
D O I
10.1109/ACCESS.2022.3159653
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Neonatal seizures are sudden events in brain activity with detrimental effects in neurological functions usually related to epileptic fits. Though neonatal seizures can be identified from electroencephalography (EEG), this is a challenging endeavour since expert visual inspection of EEG recordings is time consuming and prone to errors due the data's nonstationarity and low signal-to-noise ratio. Towards the greater aim of automatic clinical decision making and monitoring, we propose a multi-output Gaussian process (MOGP) framework for neonatal EEG modelling. In particular, our work builds on the multi-output spectral mixture (MOSM) covariance kernel and shows that MOSM outperforms other commonly-used covariance functions in the literature when it comes to data imputation and hyperparameter-based seizure detection. To the best of our knowledge, our work is the first attempt at modelling and classifying neonatal EEG using MOGPs. Our main contributions are: i) the development of an MOGP-based framework for neonatal EEG analysis; ii) the experimental validation of the MOSM covariance kernel on real-world neonatal EEG for data imputation; and iii) the design of features for EEG based on MOSM hyperparameters and their validation for seizure detection (classification) in a patient specific approach.
引用
收藏
页码:32912 / 32927
页数:16
相关论文
共 50 条
  • [41] Blind Drift Calibration of Sensor Networks using Multi-output Gaussian Process
    Yang, Anqi
    Wang, Pengjun
    Yang, Huazhong
    2018 IEEE SENSORS, 2018, : 665 - 668
  • [42] Hammerstein Modeling with Structure Identification for Multi-input Multi-output Nonlinear Industrial Processes
    Qi, Chenkun
    Li, Han-Xiong
    Zhao, Xianchao
    Li, Shaoyuan
    Gao, Feng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (19) : 11153 - 11169
  • [43] Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes
    王恒骞
    耿君先
    陈磊
    JournalofDonghuaUniversity(EnglishEdition), 2023, 40 (01) : 27 - 33
  • [44] Gaussian Process Latent Variable Model-Based Multi-Output Modeling of Incomplete Data
    Hu, Zhiyong
    Wang, Chao
    Wu, Jianguo
    Du, Dongping
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) : 1941 - 1951
  • [45] MODELING MULTI-OUTPUT FILTERING EFFECTS IN PCMOS
    Singh, Anshul
    Basu, Arindam
    Ling, Keck-Voon
    Mooney, Vincent J., III
    2011 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2011, : 414 - 417
  • [46] Regularized Multi-Output Gaussian Convolution Process With Domain Adaptation
    Wang, Xinming
    Wang, Chao
    Song, Xuan
    Kirby, Levi
    Wu, Jianguo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6142 - 6156
  • [47] Online Sparse Multi-Output Gaussian Process Regression and Learning
    Yang, Le
    Wang, Ke
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2019, 5 (02): : 258 - 272
  • [48] Geotechnical Site Characterizations Using a Bayesian-Optimized Multi-Output Gaussian Process
    Peng, Ming-Qing
    Qiu, Zhi-Chao
    Shen, Si-Liang
    Li, Yu-Cheng
    Zhou, Jia-Jie
    Xu, Hui
    SUSTAINABILITY, 2024, 16 (13)
  • [49] Variational Dependent Multi-output Gaussian Process Dynamical Systems
    Zhao, Jing
    Sun, Shiliang
    DISCOVERY SCIENCE, DS 2014, 2014, 8777 : 350 - 361
  • [50] Constrained Multi-Output Gaussian Process Regression for Data Reconciliation
    Horak, W.
    Louw, T. M.
    Bradshaw, S. M.
    IFAC PAPERSONLINE, 2024, 58 (04): : 324 - 329