Modeling Neonatal EEG Using Multi-Output Gaussian Processes

被引:2
|
作者
Caro, Victor [1 ,2 ]
Ho, Jou-Hui [3 ]
Witting, Scarlet [4 ,5 ]
Tobar, Felipe [1 ,6 ]
机构
[1] Univ Chile, Initiat Data & Artificial Intelligence, Santiago 8370456, Chile
[2] Univ Chile, Dept Comp Sci, Santiago 8370456, Chile
[3] Univ Chile, Dept Elect Engn, Santiago 8370448, Chile
[4] Hosp Clin San Borja Arriaran, Pediat Neurol, Santiago 8360160, Chile
[5] Univ Chile, Fac Med, Pediat Dept, Cent Campus, Santiago 8380453, Chile
[6] Univ Chile, Ctr Math Modelling, Santiago 8370456, Chile
关键词
Electroencephalography; Pediatrics; Brain modeling; Kernel; Gaussian processes; Data models; Artificial neural networks; multi-output; data imputation; seizure detection; spectral mixture kernels; SEIZURE DETECTION; NEWBORN EEG; CLASSIFICATION;
D O I
10.1109/ACCESS.2022.3159653
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Neonatal seizures are sudden events in brain activity with detrimental effects in neurological functions usually related to epileptic fits. Though neonatal seizures can be identified from electroencephalography (EEG), this is a challenging endeavour since expert visual inspection of EEG recordings is time consuming and prone to errors due the data's nonstationarity and low signal-to-noise ratio. Towards the greater aim of automatic clinical decision making and monitoring, we propose a multi-output Gaussian process (MOGP) framework for neonatal EEG modelling. In particular, our work builds on the multi-output spectral mixture (MOSM) covariance kernel and shows that MOSM outperforms other commonly-used covariance functions in the literature when it comes to data imputation and hyperparameter-based seizure detection. To the best of our knowledge, our work is the first attempt at modelling and classifying neonatal EEG using MOGPs. Our main contributions are: i) the development of an MOGP-based framework for neonatal EEG analysis; ii) the experimental validation of the MOSM covariance kernel on real-world neonatal EEG for data imputation; and iii) the design of features for EEG based on MOSM hyperparameters and their validation for seizure detection (classification) in a patient specific approach.
引用
收藏
页码:32912 / 32927
页数:16
相关论文
共 50 条
  • [21] Nonstationary multi-output Gaussian processes via harmonizable spectral mixtures
    Altamirano, Matias
    Tobar, Felipe
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [22] Non-linear process convolutions for multi-output Gaussian processes
    Alvarez, Mauricio A.
    Ward, Wil O. C.
    Guarnizo, Cristian
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [23] Near-Optimal Active Learning of Multi-Output Gaussian Processes
    Zhang, Yehong
    Trong Nghia Hoang
    Low, Kian Hsiang
    Kankanhalli, Mohan
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2351 - 2357
  • [24] Non-parametric dynamic system identification of ships using multi-output Gaussian Processes
    Ramire, Wilmer Ariza
    Leong, Zhi Quan
    Hung Nguyen
    Jayasinghe, Shantha Gamini
    OCEAN ENGINEERING, 2018, 166 : 26 - 36
  • [25] Non-parametric dynamics modeling for unmanned surface vehicle using spectral metric multi-output Gaussian processes learning
    Zhang, Zhao
    Ren, Junsheng
    OCEAN ENGINEERING, 2024, 292
  • [26] Dynamic System Identification of Underwater Vehicles Using Multi-output Gaussian Processes附视频
    Wilmer Ariza Ramirez
    Ju Kocijan
    Zhi Quan Leong
    Hung Duc Nguyen
    Shantha Gamini Jayasinghe
    International Journal of Automation and Computing, 2021, (05) : 681 - 693
  • [27] Fault prognosis of filamentous sludge bulking using an enhanced multi-output gaussian processes regression
    Liu, Yiqi
    Pan, Yongping
    Huang, Daoping
    Wang, Qilin
    CONTROL ENGINEERING PRACTICE, 2017, 62 : 46 - 54
  • [28] Non-parametric dynamics modeling for unmanned surface vehicle using spectral metric multi-output Gaussian processes learning
    Zhang, Zhao
    Ren, Junsheng
    Ocean Engineering, 2024, 292
  • [29] GAP FILLING OF BIOPHYSICAL PARAMETER TIME SERIES WITH MULTI-OUTPUT GAUSSIAN PROCESSES
    Mateo-Sanchis, Anna
    Munoz-Mari, Jordi
    Campos-Taberner, Manuel
    Garcia-Haro, Javier
    Camps-Valls, Gustau
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4039 - 4042
  • [30] A Discriminative Multi-Output Gaussian Processes Scheme for Brain Electrical Activity Analysis
    Torres-Valencia, Cristian
    Orozco, Alvaro
    Cardenas-Pena, David
    Alvarez-Meza, Andres
    Alvarez, Mauricio
    APPLIED SCIENCES-BASEL, 2020, 10 (19): : 1 - 15