Multi-view subspace clustering networks with local and global graph information

被引:39
|
作者
Zheng, Qinghai [1 ]
Zhu, Jihua [1 ]
Ma, Yuanyuan [1 ]
Li, Zhongyu [1 ]
Tian, Zhiqiang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Subspace clustering; Autoencoder; Multi-view clustering;
D O I
10.1016/j.neucom.2021.03.115
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study investigates the problem of multi-view subspace clustering, the goal of which is to explore the underlying grouping structure of data collected from different fields or measurements. Since data do not always comply with the linear subspace models in many real-world applications, most existing multi view subspace clustering methods based on the shallow linear subspace models may fail in practice. Furthermore, the underlying graph information of multi-view data is usually ignored in most existing multi-view subspace clustering methods. To address the aforementioned limitations, we proposed the novel multi-view subspace clustering networks with local and global graph information, termed MSCNLG, in this paper. Specifically, autoencoder networks are employed on multiple views to achieve latent smooth representations that are suitable for the linear assumption. Simultaneously, by integrating fused multi-view graph information into self-expressive layers, the proposed MSCNLG obtains the common shared multi-view subspace representation, which can be used to get clustering results by employing the standard spectral clustering algorithm. As an end-to-end trainable framework, the proposed method fully investigates the valuable information of multiple views. Comprehensive experiments on six benchmark datasets validate the effectiveness and superiority of the proposed MSCNLG. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [31] Sequential multi-view subspace clustering
    Lei, Fangyuan
    Li, Qin
    NEURAL NETWORKS, 2022, 155 : 475 - 486
  • [32] Multi-view spectral clustering via robust local subspace learning
    Lin Feng
    Lei Cai
    Yang Liu
    Shenglan Liu
    Soft Computing, 2017, 21 : 1937 - 1948
  • [33] Multi-view spectral clustering via robust local subspace learning
    Feng, Lin
    Cai, Lei
    Liu, Yang
    Liu, Shenglan
    SOFT COMPUTING, 2017, 21 (08) : 1937 - 1948
  • [34] Graph-regularized least squares regression for multi-view subspace clustering
    Chen, Yongyong
    Wang, Shuqin
    Zheng, Fangying
    Cen, Yigang
    KNOWLEDGE-BASED SYSTEMS, 2020, 194
  • [35] Tensor-SVD Based Graph Learning for Multi-View Subspace Clustering
    Gao, Quanxue
    Xia, Wei
    Wan, Zhizhen
    Xie, Deyan
    Zhang, Pu
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3930 - 3937
  • [36] Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering
    Chen, Yongyong
    Xiao, Xiaolin
    Peng, Chong
    Lu, Guangming
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 92 - 104
  • [37] Dual Information Enhanced Multi-view Attributed Graph Clustering
    Lin, Jia-Qi
    Chen, Man-Sheng
    Zhu, Xi-Ran
    Wang, Chang-Dong
    Zhang, Haizhang
    arXiv, 2022,
  • [38] Scalable Affine Multi-view Subspace Clustering
    Wanrong Yu
    Xiao-Jun Wu
    Tianyang Xu
    Ziheng Chen
    Josef Kittler
    Neural Processing Letters, 2023, 55 : 4679 - 4696
  • [39] Diverse and Common Multi-View Subspace Clustering
    Lu, Zhiqiang
    Wu, Songsong
    Liu, Yurong
    Gao, Guangwei
    Wu, Fei
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 878 - 882
  • [40] Feature concatenation multi-view subspace clustering
    Zheng, Qinghai
    Zhu, Jihua
    Li, Zhongyu
    Pang, Shanmin
    Wang, Jun
    Li, Yaochen
    NEUROCOMPUTING, 2020, 379 : 89 - 102