Feature concatenation multi-view subspace clustering

被引:79
|
作者
Zheng, Qinghai [1 ]
Zhu, Jihua [1 ]
Li, Zhongyu [1 ]
Pang, Shanmin [1 ]
Wang, Jun [2 ]
Li, Yaochen [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software Engn, Xian 710049, Peoples R China
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Subspace clustering; Low-rank representation; Feature concatenation; MAXIMUM-ENTROPY DISCRIMINATION; ALGORITHM; REPRESENTATION; FACTORIZATION; SCALE;
D O I
10.1016/j.neucom.2019.10.074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering is a learning paradigm based on multi-view data. Since statistic properties of different views are diverse, even incompatible, few approaches implement multi-view clustering based on the concatenated features straightforward. However, feature concatenation is a natural way to combine multiview data. To this end, this paper proposes a novel multi-view subspace clustering approach dubbed Feature Concatenation Multi-view Subspace Clustering (FCMSC), which boosts the clustering performance by exploring the consensus information of multi-view data. Specifically, multi-view data are concatenated into a joint representation firstly, then, l(2,1)-norm is integrated into the objective function to deal with the sample-specific and cluster-specific corruptions of multiple views. Moreover, a graph regularized FCMSC is also proposed in this paper to explore both the consensus information and complementary information of multi-view data for clustering. It is noteworthy that the obtained coefficient matrix is not derived by simply applying the Low-Rank Representation (LRR) to concatenated features directly. Finally, an effective algorithm based on the Augmented Lagrangian Multiplier (ALM) is designed to optimize the objective functions. Comprehensive experiments on six real-world datasets illustrate the superiority of the proposed methods over several state-of-the-art approaches for multi-view clustering. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 50 条
  • [1] Multi-View Subspace Clustering
    Gao, Hongchang
    Nie, Feiping
    Li, Xuelong
    Huang, Heng
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4238 - 4246
  • [2] MULTI-VIEW FEATURE BOOSTING NETWORK FOR DEEP SUBSPACE CLUSTERING
    Song, Jinjoo
    Yoon, Gang-Joon
    Baek, Sangwon
    Yoon, Sang Min
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 496 - 500
  • [3] Sequential multi-view subspace clustering
    Lei, Fangyuan
    Li, Qin
    [J]. Neural Networks, 2022, 155 : 475 - 486
  • [4] Latent Multi-view Subspace Clustering
    Zhang, Changqing
    Hu, Qinghua
    Fu, Huazhu
    Zhu, Pengfei
    Cao, Xiaochun
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4333 - 4341
  • [5] Adaptive Multi-View Subspace Clustering
    Tang, Qifan
    Zhang, Yulong
    He, Shihao
    Zhou, Zhihao
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2021, 55 (05): : 102 - 112
  • [6] Partial Multi-view Subspace Clustering
    Xu, Nan
    Guo, Yanqing
    Zheng, Xin
    Wang, Qianyu
    Luo, Xiangyang
    [J]. PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1794 - 1801
  • [7] Multi-View MERA Subspace Clustering
    Long, Zhen
    Zhu, Ce
    Chen, Jie
    Li, Zihan
    Ren, Yazhou
    Liu, Yipeng
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3102 - 3112
  • [8] Sequential multi-view subspace clustering
    Lei, Fangyuan
    Li, Qin
    [J]. NEURAL NETWORKS, 2022, 155 : 475 - 486
  • [9] Anchor-based multi-view subspace clustering with hierarchical feature descent
    Ou, Qiyuan
    Wang, Siwei
    Zhang, Pei
    Zhou, Sihang
    Zhu, En
    [J]. INFORMATION FUSION, 2024, 106
  • [10] Scalable Affine Multi-view Subspace Clustering
    Wanrong Yu
    Xiao-Jun Wu
    Tianyang Xu
    Ziheng Chen
    Josef Kittler
    [J]. Neural Processing Letters, 2023, 55 : 4679 - 4696