Feature concatenation multi-view subspace clustering

被引:79
|
作者
Zheng, Qinghai [1 ]
Zhu, Jihua [1 ]
Li, Zhongyu [1 ]
Pang, Shanmin [1 ]
Wang, Jun [2 ]
Li, Yaochen [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software Engn, Xian 710049, Peoples R China
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Subspace clustering; Low-rank representation; Feature concatenation; MAXIMUM-ENTROPY DISCRIMINATION; ALGORITHM; REPRESENTATION; FACTORIZATION; SCALE;
D O I
10.1016/j.neucom.2019.10.074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering is a learning paradigm based on multi-view data. Since statistic properties of different views are diverse, even incompatible, few approaches implement multi-view clustering based on the concatenated features straightforward. However, feature concatenation is a natural way to combine multiview data. To this end, this paper proposes a novel multi-view subspace clustering approach dubbed Feature Concatenation Multi-view Subspace Clustering (FCMSC), which boosts the clustering performance by exploring the consensus information of multi-view data. Specifically, multi-view data are concatenated into a joint representation firstly, then, l(2,1)-norm is integrated into the objective function to deal with the sample-specific and cluster-specific corruptions of multiple views. Moreover, a graph regularized FCMSC is also proposed in this paper to explore both the consensus information and complementary information of multi-view data for clustering. It is noteworthy that the obtained coefficient matrix is not derived by simply applying the Low-Rank Representation (LRR) to concatenated features directly. Finally, an effective algorithm based on the Augmented Lagrangian Multiplier (ALM) is designed to optimize the objective functions. Comprehensive experiments on six real-world datasets illustrate the superiority of the proposed methods over several state-of-the-art approaches for multi-view clustering. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 50 条
  • [31] Double graphs regularized multi-view subspace clustering
    Chen, Longlong
    Wang, Yulong
    Liu, Youheng
    Hu, Yutao
    Wang, Libin
    Luo, Huiwu
    Tang, Yuan Yan
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (01)
  • [32] Diversity-induced Multi-view Subspace Clustering
    Cao, Xiaochun
    Zhang, Changqing
    Fu, Huazhu
    Liu, Si
    Zhang, Hua
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 586 - 594
  • [33] Multi-view subspace clustering based on adaptive search
    Dong, Anxue
    Wu, Zikai
    Zhang, Hongjuan
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [34] Learning Smooth Representation for Multi-view Subspace Clustering
    Huang, Shudong
    Liu, Yixi
    Ren, Yazhou
    Tsang, Ivor W.
    Xu, Zenglin
    Lv, Jiancheng
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3421 - 3429
  • [35] Latent shared representation for multi-view subspace clustering
    Huang, Baifu
    Yuan, Haoliang
    Lai, Loi Lei
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [36] Multi-View Subspace Clustering With Block Diagonal Representation
    Guo, Jipeng
    Yin, Wenbin
    Sun, Yanfeng
    Hu, Yongli
    [J]. IEEE ACCESS, 2019, 7 : 84829 - 84838
  • [37] Multi-view subspace clustering via partition fusion
    Lv, Juncheng
    Kang, Zhao
    Wang, Boyu
    Ji, Luping
    Xu, Zenglin
    [J]. INFORMATION SCIENCES, 2021, 560 (560) : 410 - 423
  • [38] Constrained bilinear factorization multi-view subspace clustering
    Zheng, Qinghai
    Zhu, Jihua
    Tian, Zhiqiang
    Li, Zhongyu
    Pang, Shanmin
    Jia, Xiuyi
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 194
  • [39] Flexible Multi-View Representation Learning for Subspace Clustering
    Li, Ruihuang
    Zhang, Changqing
    Hu, Qinghua
    Zhu, Pengfei
    Wang, Zheng
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2916 - 2922
  • [40] Multi-view subspace clustering with incomplete graph information
    He, Xiaxia
    Wang, Boyue
    Luo, Cuicui
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    [J]. IET COMPUTER VISION, 2022,