Tensorized Incomplete Multi-view Kernel Subspace Clustering

被引:0
|
作者
Zhang, Guang-Yu [1 ]
Huang, Dong [1 ]
Wang, Chang-Dong [2 ,3 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[3] Guangdong Prov Key Lab Informat Secur Technol, Guangzhou, Peoples R China
关键词
Multi-view incomplete clustering; Kernelized model; Tensor subspace clustering; Unified framework;
D O I
10.1016/j.neunet.2024.106529
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently considerable advances have been achieved in the incomplete multi-view clustering (IMC) research. However, the current IMC works are often faced with three challenging issues. First, they mostly lack the ability to recover the nonlinear subspace structures in the multiple kernel spaces. Second, they usually neglect the high-order relationship in multiple representations. Third, they often have two or even more hyper-parameters and may not be practical for some real-world applications. To tackle these issues, we present a Tensorized Incomplete Multi-view Kernel Subspace Clustering (TIMKSC) approach. Specifically, by incorporating the kernel learning technique into an incomplete subspace clustering framework, our approach can robustly explore the latent subspace structure hidden in multiple views. Furthermore, we impute the incomplete kernel matrices and learn the low-rank tensor representations in a mutual enhancement manner. Notably, our approach can discover the underlying relationship among the observed and missing samples while capturing the high-order correlation to assist subspace clustering. To solve the proposed optimization model, we design a three-step algorithm to efficiently minimize the unified objective function, which only involves one hyper-parameter that requires tuning. Experiments on various benchmark datasets demonstrate the superiority of our approach. The source code and datasets are available at: https://www.researchgate.net/publication/381828300_TIMKSC_ 20240629.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Unified and Tensorized Incomplete Multi-View Kernel Subspace Clustering
    Zhang, Guang-Yu
    Huang, Dong
    Wang, Chang-Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (02): : 1550 - 1566
  • [2] Consistency and Diversity Induced Tensorized Multi-View Subspace Clustering
    Xiao, Chunming
    Huang, Yonghui
    Huang, Haonan
    Zhao, Qibin
    Zhou, Guoxu
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 1 - 12
  • [3] Tensorized Incomplete Multi-View Clustering with Intrinsic Graph Completion
    Zhao, Shuping
    Wen, Jie
    Fei, Lunke
    Zhang, Bob
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11327 - 11335
  • [4] Tensorized and Compressed Multi-View Subspace Clustering via Structured Constraint
    Chang, Wei
    Chen, Huimin
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (12) : 10434 - 10451
  • [6] Tensorized topological graph learning for generalized incomplete multi-view clustering
    Zhang, Zheng
    He, Wen-Jue
    INFORMATION FUSION, 2023, 100
  • [7] Tensorized Multi-view Subspace Representation Learning
    Zhang, Changqing
    Fu, Huazhu
    Wang, Jing
    Li, Wen
    Cao, Xiaochun
    Hu, Qinghua
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (8-9) : 2344 - 2361
  • [8] Tensorized Multi-view Subspace Representation Learning
    Changqing Zhang
    Huazhu Fu
    Jing Wang
    Wen Li
    Xiaochun Cao
    Qinghua Hu
    International Journal of Computer Vision, 2020, 128 : 2344 - 2361
  • [9] Multi-view subspace clustering with incomplete graph information
    He, Xiaxia
    Wang, Boyue
    Luo, Cuicui
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IET COMPUTER VISION, 2022,
  • [10] Enriched Robust Multi-View Kernel Subspace Clustering
    Zhang, Mengyuan
    Liu, Kai
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1992 - 2001