Measure controllable volumetric mesh parameterization

被引:7
|
作者
Su, Kehua [1 ]
Chen, Wei [2 ]
Lei, Na [3 ,4 ]
Cui, Li [5 ]
Jiang, Jian [2 ]
Gu, Xianfeng David [2 ]
机构
[1] Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Peoples R China
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[3] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[5] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Parameterization; Volume; Controllable; Optimal mass transportation; OPTIMAL TRANSPORT;
D O I
10.1016/j.cad.2016.04.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Volumetric parameterization is a fundamental problem in solid and physical modeling. In practice, it is highly desirable to control the volumes of the regions of interest in the parameter domain. This work introduces a novel volumetric parameterization method, which allows users to prescribe the target volumetric measure of the input solid. Given a simply connected tetrahedral mesh with a single boundary surface, we first compute a volumetric harmonic map to parameterize the solid onto the unit solid ball; then we compute an optimal mass transportation map from the unit solid ball with the push-forward volume element induced by the harmonic map onto the parameter domain with the user prescribed volumetric measure. The composition of the volumetric harmonic map and the optimal mass transportation map gives a measure controllable volumetric parameterization. Furthermore, this method can handle solids with empty voids inside. The method has solid theoretic foundation, and is based on conventional algorithms in computational geometry, and easy to implement. The experimental results demonstrate the efficiency and efficacy of the proposed method. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 198
页数:11
相关论文
共 50 条
  • [31] Volumetric measure of isostructurality
    Fábián, L
    Kálmán, A
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1999, 55 : 1099 - 1108
  • [32] Surface parameterization in volumetric images for feature classification
    Yarger, RWI
    Quek, FKH
    IEEE INTERNATIONAL SYMPOSIUM ON BIO-INFORMATICS AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2000, : 297 - 303
  • [33] Domain construction for volumetric cross-parameterization
    Kwok, Tsz-Ho
    Wang, Charlie C. L.
    COMPUTERS & GRAPHICS-UK, 2014, 38 : 86 - 96
  • [34] Energy Optimized Parameterization of Spherical Triangle Mesh
    Sun, Chao
    Guo, Zhenbo
    Wang, Kaixi
    Cheng, Na
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND COMPUTER APPLICATION, 2016, 30 : 257 - 260
  • [35] Sparse Cholesky Updates for Interactive Mesh Parameterization
    Herholz, Philipp
    Sorkine-Hornung, Olga
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06):
  • [36] Mesh Parameterization with Generalized Discrete Conformal Maps
    Colin Cartade
    Christian Mercat
    Rémy Malgouyres
    Chafik Samir
    Journal of Mathematical Imaging and Vision, 2013, 46 : 1 - 11
  • [37] Mesh Parameterization with Generalized Discrete Conformal Maps
    Cartade, Colin
    Mercat, Christian
    Malgouyres, Remy
    Samir, Chafik
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 46 (01) : 1 - 11
  • [38] Bounded-distortion piecewise mesh parameterization
    Sorkine, O
    Cohen-Or, D
    Goldenthal, R
    Lischinski, D
    VIS 2002: IEEE VISUALIZATION 2002, PROCEEDINGS, 2002, : 355 - 362
  • [39] Angle-Preserving Quadrilateral Mesh Parameterization
    Gong, Wenyong
    Xie, Xiaohua
    Ma, Rui
    Wu, Tieru
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2015, 35 (06) : 51 - 59
  • [40] Isometry-Aware Preconditioning for Mesh Parameterization
    Claici, S.
    Bessmeltsev, M.
    Schaefer, S.
    Solomon, J.
    COMPUTER GRAPHICS FORUM, 2017, 36 (05) : 37 - 47