Measure controllable volumetric mesh parameterization

被引:7
|
作者
Su, Kehua [1 ]
Chen, Wei [2 ]
Lei, Na [3 ,4 ]
Cui, Li [5 ]
Jiang, Jian [2 ]
Gu, Xianfeng David [2 ]
机构
[1] Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Peoples R China
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[3] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[5] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Parameterization; Volume; Controllable; Optimal mass transportation; OPTIMAL TRANSPORT;
D O I
10.1016/j.cad.2016.04.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Volumetric parameterization is a fundamental problem in solid and physical modeling. In practice, it is highly desirable to control the volumes of the regions of interest in the parameter domain. This work introduces a novel volumetric parameterization method, which allows users to prescribe the target volumetric measure of the input solid. Given a simply connected tetrahedral mesh with a single boundary surface, we first compute a volumetric harmonic map to parameterize the solid onto the unit solid ball; then we compute an optimal mass transportation map from the unit solid ball with the push-forward volume element induced by the harmonic map onto the parameter domain with the user prescribed volumetric measure. The composition of the volumetric harmonic map and the optimal mass transportation map gives a measure controllable volumetric parameterization. Furthermore, this method can handle solids with empty voids inside. The method has solid theoretic foundation, and is based on conventional algorithms in computational geometry, and easy to implement. The experimental results demonstrate the efficiency and efficacy of the proposed method. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 198
页数:11
相关论文
共 50 条
  • [21] Mesh reconstruction by meshless denoising and parameterization
    Zhang, Lei
    Liu, Ligang
    Gotsman, Craig
    Huang, Hua
    COMPUTERS & GRAPHICS-UK, 2010, 34 (03): : 198 - 208
  • [22] Frame Field Generation for Mesh Parameterization
    Kaelberer, Felix
    Polthier, Konrad
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1031 - 1034
  • [23] SeamCut: Interactive Mesh Segmentation for Parameterization
    Lucquin, Victor
    Deguy, Sebastien
    Boubekeur, Tamy
    IGGRAPH ASIA 2017 TECHNICAL BRIEFS (SA'17), 2017,
  • [24] Geodesic Based Conformal Mesh Parameterization
    Zou, Qiang
    Zhao, Jibin
    Zhao, Yanguo
    Liu, Guangbao
    Jin, Haiyang
    FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [25] Triangular mesh parameterization with trimmed surfaces
    Ruiz, Oscar E.
    Mejia, Daniel
    Cadavid, Carlos A.
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2015, 9 (04): : 303 - 316
  • [26] SURFACE MESH PARAMETERIZATION WITH NATURAL BOUNDARY
    Ye MingZhu XiaofengWang ChengtaoSchool of Mechanical Engineering
    Chinese Journal of Mechanical Engineering, 2003, (03) : 264 - 267
  • [27] Mesh Parameterization Meets Intrinsic Triangulations
    Akalin, Koray
    Finnendahl, Ugo
    Sorkine-Hornung, Olga
    Alexa, Marc
    COMPUTER GRAPHICS FORUM, 2024, 43 (05)
  • [28] Mesh parameterization based on edge collapse
    Qian, Jiang
    Ye, Xiu-zi
    Fang, Cui-hao
    Zhang, San-yuan
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (08): : 1153 - 1159
  • [29] Mesh parameterization based on edge collapse
    Jiang Qian
    Xiu-zi Ye
    Cui-hao Fang
    San-yuan Zhang
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 1153 - 1159
  • [30] Tubular triangular mesh parameterization and applications
    Wang, Yimin
    Zheng, Jianmin
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2010, 21 (02) : 91 - 102