Measure controllable volumetric mesh parameterization

被引:7
|
作者
Su, Kehua [1 ]
Chen, Wei [2 ]
Lei, Na [3 ,4 ]
Cui, Li [5 ]
Jiang, Jian [2 ]
Gu, Xianfeng David [2 ]
机构
[1] Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Peoples R China
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[3] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[5] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Parameterization; Volume; Controllable; Optimal mass transportation; OPTIMAL TRANSPORT;
D O I
10.1016/j.cad.2016.04.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Volumetric parameterization is a fundamental problem in solid and physical modeling. In practice, it is highly desirable to control the volumes of the regions of interest in the parameter domain. This work introduces a novel volumetric parameterization method, which allows users to prescribe the target volumetric measure of the input solid. Given a simply connected tetrahedral mesh with a single boundary surface, we first compute a volumetric harmonic map to parameterize the solid onto the unit solid ball; then we compute an optimal mass transportation map from the unit solid ball with the push-forward volume element induced by the harmonic map onto the parameter domain with the user prescribed volumetric measure. The composition of the volumetric harmonic map and the optimal mass transportation map gives a measure controllable volumetric parameterization. Furthermore, this method can handle solids with empty voids inside. The method has solid theoretic foundation, and is based on conventional algorithms in computational geometry, and easy to implement. The experimental results demonstrate the efficiency and efficacy of the proposed method. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 198
页数:11
相关论文
共 50 条
  • [1] Discrete Lie flow: A measure controllable parameterization method
    Su, Kehua
    Li, Chenchen
    Zhao, Shifan
    Lei, Na
    Gu, Xianfeng
    COMPUTER AIDED GEOMETRIC DESIGN, 2019, 72 : 49 - 68
  • [2] Mesh segmentation based on mesh parameterization techniques
    Qian, Jiang
    Chen, Zhi-Yang
    Ye, Xiu-Zi
    Zhang, San-Yuan
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2008, 42 (08): : 1370 - 1375
  • [3] An energy minimizing mesh parameterization
    Li Yong
    Liu Bo
    Zhang Hong-bin
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 1315 - 1318
  • [4] Research progress on mesh parameterization
    Guo F.-H.
    Zhang C.-M.
    Jiao W.-J.
    Zhang, Cai-Ming (czhang@sdu.edu.cn), 1600, Chinese Academy of Sciences (27): : 112 - 135
  • [5] An anisotropic mesh parameterization scheme
    Igor Guskov
    Engineering with Computers, 2004, 20 : 129 - 135
  • [6] Parameterization for fitting triangular mesh
    LIN Hongwei**
    ProgressinNaturalScience, 2006, (11) : 1214 - 1221
  • [7] Parameterization for fitting triangular mesh
    Lin Hongwei
    Wang Guojin
    Liu Ligang
    Bao Hujun
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2006, 16 (11) : 1214 - 1221
  • [8] Mesh parameterization with a virtual boundary
    Lee, Y
    Kim, HS
    Lee, S
    COMPUTERS & GRAPHICS-UK, 2002, 26 (05): : 677 - 686
  • [9] Mesh Parameterization Methods and Their Applications
    Sheffer, Alla
    Praun, Emil
    Rose, Kenneth
    FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2006, 2 (02): : 1 - +
  • [10] An anisotropic mesh parameterization scheme
    Guskov, I
    ENGINEERING WITH COMPUTERS, 2004, 20 (02) : 129 - 135