Independent control of the vortex chirality and polarity in a pair of magnetic nanodots

被引:9
|
作者
Li, Junqin [1 ]
Wang, Yong [1 ]
Cao, Jiefeng [1 ]
Meng, Xiangyu [1 ]
Zhu, Fangyuan [1 ]
Wu, Yanqing [1 ]
Tai, Renzhong [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic nanodots; Magnetic vortex; Chirality; Polarity; PERMALLOY; NANOSTRUCTURES; DISKS; DOTS;
D O I
10.1016/j.jmmm.2017.03.080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality. (C) 2017 Elsevier B. V. All rights reserved.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 50 条
  • [41] Temperature effect on vortex-core reversals in magnetic nanodots
    Kim, Bosung
    Yoo, Myoung-Woo
    Lee, Jehyun
    Kim, Sang-Koog
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)
  • [42] Dynamic origin of vortex core switching in soft magnetic nanodots
    Guslienko, Konstantin Yu.
    Lee, Ki-Suk
    Kim, Sang-Koog
    PHYSICAL REVIEW LETTERS, 2008, 100 (02)
  • [43] Development of vortex state in circular magnetic nanodots: Theory and experiment
    Mejia-Lopez, J.
    Altbir, D.
    Landeros, P.
    Escrig, J.
    Romero, A. H.
    Roshchin, Igor V.
    Li, C-P.
    Fitzsimmons, M. R.
    Batlle, X.
    Schuller, Ivan K.
    PHYSICAL REVIEW B, 2010, 81 (18)
  • [44] Fast chirality reversal of the magnetic vortex by electric current
    Lim, W. L.
    Liu, R. H.
    Tyliszczak, T.
    Erokhin, S. G.
    Berkov, D.
    Urazhdin, S.
    APPLIED PHYSICS LETTERS, 2014, 105 (22)
  • [45] Switching the chirality of a magnetic vortex deterministically with an electric field
    Peng, Ren-Ci
    Hu, Jia-Mian
    Yang, Tiannan
    Cheng, Xiaoxing
    Wang, Jian-Jun
    Huang, Hou-Bing
    Chen, Long-Qing
    Nan, Ce-Wen
    MATERIALS RESEARCH LETTERS, 2018, 6 (12): : 669 - 675
  • [46] Vortex manipulation and chirality control in asymmetric bilayer nanomagnets
    Stebliy, Maxim E.
    Ognev, Alexey V.
    Samardak, Alexander S.
    Kolesnikov, Alexander G.
    Chebotkevich, Ludmila A.
    Han, Xiufeng
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)
  • [47] Spin modes of triangular magnetic nanodots in the vortex, Y, and buckle states
    Montoncello, Federico
    Nizzoli, Fabrizio
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (02)
  • [48] Current induced switching of vortex polarity in magnetic nanodisks
    Sheka, Denis D.
    Gaididei, Yuri
    Mertens, Franz G.
    APPLIED PHYSICS LETTERS, 2007, 91 (08)
  • [49] Polarity and chirality control of an active fluid by passive nematic defects
    Sciortino, Alfredo
    Neumann, Lukas J.
    Krueger, Timo
    Maryshev, Ivan
    Teshima, Tetsuhiko F.
    Wolfrum, Bernhard
    Frey, Erwin
    Bausch, Andreas R.
    NATURE MATERIALS, 2023, 22 (02) : 260 - +
  • [50] Polarity and chirality control of an active fluid by passive nematic defects
    Alfredo Sciortino
    Lukas J. Neumann
    Timo Krüger
    Ivan Maryshev
    Tetsuhiko F. Teshima
    Bernhard Wolfrum
    Erwin Frey
    Andreas R. Bausch
    Nature Materials, 2023, 22 : 260 - 268