Independent control of the vortex chirality and polarity in a pair of magnetic nanodots

被引:9
|
作者
Li, Junqin [1 ]
Wang, Yong [1 ]
Cao, Jiefeng [1 ]
Meng, Xiangyu [1 ]
Zhu, Fangyuan [1 ]
Wu, Yanqing [1 ]
Tai, Renzhong [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic nanodots; Magnetic vortex; Chirality; Polarity; PERMALLOY; NANOSTRUCTURES; DISKS; DOTS;
D O I
10.1016/j.jmmm.2017.03.080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality. (C) 2017 Elsevier B. V. All rights reserved.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 50 条
  • [31] Vortex state stability in soft magnetic cylindrical nanodots
    Guslienko, KY
    Novosad, V
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (08) : 4451 - 4455
  • [32] Vortex state stability in soft magnetic cylindrical nanodots
    Guslienko, K.Yu.
    Novosad, V.
    Journal of Applied Physics, 2004, 96 (08): : 4451 - 4455
  • [33] Controlling the chirality and polarity of vortices in magnetic tunnel junctions
    Jenkins, A. S.
    Grimaldi, E.
    Bortolotti, P.
    Lebrun, R.
    Kubota, H.
    Yakushiji, K.
    Fukushima, A.
    de Loubens, G.
    Klein, O.
    Yuasa, S.
    Cros, V.
    APPLIED PHYSICS LETTERS, 2014, 105 (17)
  • [34] Gyrotropic linear and nonlinear motions of a magnetic vortex in soft magnetic nanodots
    Lee, Ki-Suk
    Kim, Sang-Koog
    APPLIED PHYSICS LETTERS, 2007, 91 (13)
  • [35] Control of the polarity of magnetization vortex by torsion
    Wang, Jie
    Li, Gui-Ping
    Shimada, Takahiro
    Fang, Hui
    Kitamura, Takayuki
    APPLIED PHYSICS LETTERS, 2013, 103 (24)
  • [36] Control of magnetic vortex chirality in square ring micromagnets -: art. no. 083904
    Libál, A
    Grimsditch, M
    Metlushko, V
    Vavassori, P
    Jankó, B
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (08)
  • [37] A magnetic polarity and chirality analysis of ISEE 3 interplanetary magnetic clouds
    Kahler, SW
    Crooker, NU
    Gosling, JT
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A5) : 9911 - 9918
  • [38] Precise control of the vortex chirality in magnetic nano-rings with deliberately introduced asymmetry
    Subramani, A.
    Geerpuram, D.
    Baskaran, V.
    Friedlund, J.
    Metlushko, V.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2006, 437-38 : 293 - 298
  • [39] Control of vortex chirality in regular polygonal nanomagnets using in-plane magnetic field
    Yakata, S.
    Miyata, M.
    Nonoguchi, S.
    Wada, H.
    Kimura, T.
    APPLIED PHYSICS LETTERS, 2010, 97 (22)
  • [40] Separated Edge-Soliton-Mediated Dynamic Switching of Vortex Chirality and Polarity
    Luo, Y. M.
    Wu, Y. Z.
    Yu, C. Q.
    Li, H.
    Wen, J. H.
    Zhu, L. Y.
    Qian, Z. H.
    Zhou, T. J.
    PHYSICAL REVIEW APPLIED, 2019, 11 (04)