Prediction of DCT-based Denoising Efficiency for Images Corrupted by Signal-Dependent Noise

被引:0
|
作者
Krivenko, Sergey [1 ]
Lukin, Vladimir [1 ]
Vozel, Benoit [2 ]
Chehdi, Kacem [2 ]
机构
[1] Natl Aerosp Univ, Dept Transmitters Receivers & Signal Proc, Kharkov, Ukraine
[2] Univ Rennes 1, IETR, CNRS, UMR 6164, Lannion, France
关键词
image denoising; efficiency prediction; DCT; signal-dependent noise;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a simple and fast way to predict efficiency of DCT-based filtering of images corrupted by signal dependent noise as this often happens for hyperspectral and radar remote sensing. Such prediction allows deciding in automatic way is it worth applying denoising to a given image under condition that parameters of signal-dependent noise are known a priori or pre-estimated with appropriate accuracy. It is shown that denoising efficiency can be predicted not only in terms of traditional quality criteria as output MSE or PSNR but also, with slightly less accuracy, in terms of visual quality metrics and PSNR-HVS-M.
引用
收藏
页码:254 / 258
页数:5
相关论文
共 50 条
  • [41] Reduction of Signal-Dependent Noise From Hyperspectral Images for Target Detection
    Liu, Xuefeng
    Bourennane, Salah
    Fossati, Caroline
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09): : 5396 - 5411
  • [42] Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (08): : 2957 - 2971
  • [43] Signal-Dependent Noise Parameter Estimation of Hyperspectral Remote Sensing Images
    Sun, Lei
    SPECTROSCOPY LETTERS, 2015, 48 (10) : 717 - 725
  • [44] Generalized signal-dependent noise model and parameter estimation for natural images
    Thanh Hai Thai
    Retraint, Florent
    Cogranne, Remi
    SIGNAL PROCESSING, 2015, 114 : 164 - 170
  • [45] The Denoising Method With Variational Mode Decomposition for Signal-Dependent Counting Noise in Molecular Communications
    Wang, Chao
    Huang, Yu
    Tang, Dong
    Chen, Xuan
    Li, Jun
    Wen, Miaowen
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 24337 - 24343
  • [46] DCT Coefficient Statistics in Images Corrupted by Spatially Correlated Noise
    Roenko, Alexey
    Lukin, Vladimir
    Djurovic, Igor
    2013 2ND MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2013,
  • [47] DCT-based edge detector for snapshot images
    Wu, MW
    Kuo, CJ
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV, PROCEEDINGS, 2002, : 727 - 730
  • [48] Aspects of signal-dependent noise characterization
    Heine, JJ
    Behera, M
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (04) : 806 - 815
  • [49] Prediction of Quality in DCT-Based Lossy Compression of Noisy Remote Sensing Images
    Abramov, S.
    Lukin, V.
    Zemliachenko, A.
    Vozel, B.
    Chehdi, K.
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2017, : 447 - 450
  • [50] Reversible hiding in DCT-based compressed images
    Chang, Chin-Chen
    Lin, Chia-Chen
    Tseng, Chun-Sen
    Tai, Wei-Liang
    INFORMATION SCIENCES, 2007, 177 (13) : 2768 - 2786