Signal-Dependent Noise Parameter Estimation of Hyperspectral Remote Sensing Images

被引:12
|
作者
Sun, Lei [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral remote sensing image; multiple linear regression; signal-dependent noise; the least square solution; OPERATIONAL METHOD; CLASSIFICATION; REGRESSION; REDUCTION;
D O I
10.1080/00387010.2014.991975
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
In new-generation hyperspectral sensors, the electronic noise is not dominant and the photon noise has to be taken into account. Therefore, a parametric model that accounts for both signal-dependent and signal-independent noise on the useful signal is established. A novel algorithm to estimate the parameters of the model is proposed, which consists of two steps. First, the residual image is calculated by the multiple linear regression in spectral domain to decouple the strong spectral correlation. Then, local sample statistics of the hyperspectral image and its residual image are calculated, and the system of linear equations with respect to the signal-dependent and signal-independent noise variances is established. The least square solution of the equations is the estimation of the signal-dependent and signal-independent noise variances. Experiments on the simulated hyperspectral data analyze the accuracy of the method and experiments on the real-life data show its effectiveness.
引用
收藏
页码:717 / 725
页数:9
相关论文
共 50 条
  • [1] Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (08): : 2957 - 2971
  • [2] Estimation of correlated signal-dependent noise statistics in hyperspectral images
    Mahmood, Asad
    Sears, Michael
    [J]. REMOTE SENSING LETTERS, 2021, 12 (10) : 961 - 969
  • [3] Generalized signal-dependent noise model and parameter estimation for natural images
    Thanh Hai Thai
    Retraint, Florent
    Cogranne, Remi
    [J]. SIGNAL PROCESSING, 2015, 114 : 164 - 170
  • [4] Local Signal-Dependent Noise Variance Estimation From Hyperspectral Textural Images
    Uss, Mikhail L.
    Vozel, Benoit
    Lukin, Vladimir V.
    Chehdi, Kacem
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) : 469 - 486
  • [5] Maximum likelihood estimation of spatially correlated signal-dependent noise in hyperspectral images
    Uss, Mykhail L.
    Vozel, Benoit
    Lukin, Vladimir V.
    Chehdi, Kacem
    [J]. OPTICAL ENGINEERING, 2012, 51 (11)
  • [6] Modeling and estimation of signal-dependent noise in hyperspectral imagery
    Meola, Joseph
    Eismann, Michael T.
    Moses, Randolph L.
    Ash, Joshua N.
    [J]. APPLIED OPTICS, 2011, 50 (21) : 3829 - 3846
  • [7] A robust method for parameter estimation of signal-dependent noise models in digital images
    Aiazzi, B
    Alparone, L
    Baronti, S
    [J]. DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 601 - 604
  • [8] Simplified noise model parameter estimation for signal-dependent noise
    Jeong, Bo Gyu
    Kim, Byoung Chul
    Moon, Yong Ho
    Eom, Il Kyu
    [J]. SIGNAL PROCESSING, 2014, 96 : 266 - 273
  • [9] HOMOGENEITY CLASSIFICATION FOR SIGNAL-DEPENDENT NOISE ESTIMATION IN IMAGES
    Rakhshanfar, Meisam
    Amer, Aishy
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4271 - 4275
  • [10] Reduction of Signal-Dependent Noise From Hyperspectral Images for Target Detection
    Liu, Xuefeng
    Bourennane, Salah
    Fossati, Caroline
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09): : 5396 - 5411