Grading Cancer from Liver Histology Images Using Inter and Intra Region Spatial Relations

被引:2
|
作者
Garnier, Mickael [1 ]
Ali, Maya Alsheh [1 ]
Seguin, Johanne [2 ]
Mignet, Nathalie [2 ]
Hurtut, Thomas [3 ]
Wendling, Laurent [1 ]
机构
[1] Univ Paris 05, LIPADE, Paris, France
[2] Univ Paris 05, UPCGI, Paris, France
[3] Ecole Polytech Montreal, Montreal, PQ, Canada
关键词
QUANTIFICATION;
D O I
10.1007/978-3-319-11755-3_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Histology image analysis is widely used in cancer studies since it preserves the tissue structure. In this paper, we propose a framework to grade metastatic liver histology images based on the spatial organization inter and intra regions. After detecting the presence of metastases, we first decompose the image into regions corresponding to the tissue types (sane, cancerous, vessels and gaps). A sample of each type is further decomposed into the contained biological objects (nuclei, stroma, gaps). The spatial relations between all the pairs of regions and objects are measured using a Force Histogram Decomposition. A specimen is described using a Bag of Words model aggregating the features measured on all its randomly acquired images. The grading is made using a Naive Bayes Classifier. Experiments on a 23 mice dataset with CT26 intrasplenic tumors highlight the relevance of the spatial relations with a correct grading rate of 78.95%.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 50 条
  • [1] Grading of Colorectal Cancer using Histology Images
    Sengar, Namita
    Mishra, Neeraj
    Dutta, Malay Kishore
    Prinosil, Jiri
    Burget, Radim
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 529 - 532
  • [2] Inter and intra-observer repeatability of Kellgren-Lawrence grading for osteoarthritis using DXA images
    Campbell, C. D.
    Gregory, J. S.
    Yoshida, K.
    Basu, N.
    Stewart, A.
    Reid, D. M.
    Aspden, R. M.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2007, 22 (07) : 1134 - 1134
  • [3] Grading of Cervical Intraepithelial Neoplasia Using Spatial Frequency for Optical Histology
    Pu, Yang
    Jagtap, Jaidip
    Pradhan, Asima
    Alfano, Robert R.
    OPTICAL BIOPSY XII, 2014, 8940
  • [4] Classification Cervical Cancer Using Histology Images
    Rahmadwati
    Naghdy, Golshah
    Ross, Montse
    Todd, Catherine
    Norachmawati, E.
    2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: ICCEA 2010, PROCEEDINGS, VOL 1, 2010, : 515 - 519
  • [5] Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images
    Shaban, Muhammad
    Awan, Ruqayya
    Fraz, Muhammad Moazam
    Azam, Ayesha
    Tsang, Yee-Wah
    Snead, David
    Rajpoot, Nasir M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (07) : 2395 - 2405
  • [6] Cell Nuclei Segmentation in Fluorescence Microscopy Images Using Inter- and Intra-Region Discriminative Information
    Song, Yang
    Cai, Weidong
    Feng, David Dagan
    Chen, Mei
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 6087 - 6090
  • [7] Detection and Grading of Breast Cancer via Spatial Features in Histopathological Images
    Bagdigen, M. Emin
    Bilgin, Gokhan
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 37 - 40
  • [8] Predicting Colon Cancer Outcomes from Histology Images Using Convolutional Networks
    Chen, S.
    Wang, J.
    Zhang, M.
    Xu, M.
    Sheng, W.
    Fang, Y.
    Hu, W.
    Zhang, Z.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E129 - E129
  • [9] A repository of PDX histology images for exploring spatial heterogeneity and cancer dynamics
    White, Brian S.
    Woo, Xingyi
    Koc, Soner
    Sheridan, Todd
    Neuhauser, Steven B.
    Savaliya, Akshat M.
    Dobrolecki, Lacey E.
    Landua, John D.
    Bailey, Matthew H.
    Fujita, Maihi
    Evans, Kurt W.
    Fang, Bingliang
    Fujimoto, Junya
    Raso, Maria Gabriela
    Wang, Shidan
    Xiao, Guanghua
    Xie, Yang
    Davies, Sherri R.
    Fields, Ryan C.
    Mashl, R. Jay
    Mudd, Jacqueline L.
    Chen, Yeqing
    Xiao, Min
    Xu, Xiaowei
    Hollingshead, Melinda G.
    Jiwani, Shahanawaz
    Evrard, Yvonne A.
    Wallace, Tiffany A.
    Moscow, Jeffrey A.
    Doroshow, James H.
    Mitsiades, Nicholas
    Kaochar, Salma
    Pan, Chong-Xian
    Chen, Moon S.
    Carvajal-Carmona, Luis G.
    Welm, Alana L.
    Welm, Bryan E.
    Lewis, Michael T.
    Govindan, Ramaswamy
    Ding, Li
    Li, Shunqiang
    Herlyn, Meenhard
    Davies, Michael A.
    Roth, Jack A.
    Meric-Bernstam, Funda
    Bult, Carol J.
    Davis-Dusenbery, Brandi
    Dean, Dennis A.
    Chuang, Jeffrey H.
    CANCER RESEARCH, 2022, 82 (12)
  • [10] Spatial Gene Expression Prediction from Histology Images with STco
    Shi, Zhiceng
    Zhu, Fangfang
    Wang, Changmiao
    Min, Wenwen
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 89 - 100