Spatial Gene Expression Prediction from Histology Images with STco

被引:2
|
作者
Shi, Zhiceng [1 ]
Zhu, Fangfang [3 ]
Wang, Changmiao [2 ]
Min, Wenwen [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming, Yunnan, Peoples R China
[2] Shenzhen Res Inst Big Data, Shenzhen, Peoples R China
[3] Yunnan Open Univ, Coll Nursing Hlth Sci, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatial Transcriptomics; Deep Learning; Contrastive Learning; Multi-modal Learning; Gene Expression Prediction;
D O I
10.1007/978-981-97-5128-0_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the rapid development of spatial transcriptome technology has fundamentally transformed our understanding of gene expression regulation within complex biological systems. However, the widespread application of spatial transcriptome technology in large-scale studies is hindered by its high cost and complexity. An economical alternative involves utilizing artificial intelligence to predict gene expression information from entire slices of histological images stained with hematoxylin and eosin (H&E). Nevertheless, existing methods fall short in extracting profound information from pathological images. In this paper, we propose STco, a multi-modal contrastive learning framework which comprehensively integrates multi-modal information, including histological images, gene expression features of spots, positional information of spots, and methods for aggregating gene expression. We utilized spatial transcriptomics data from two different tumors generated by the 10 times Genomics platform: human HER2 positive breast cancer (HER2+) and human cutaneous squamous cell carcinoma (cSCC) datasets. The experimental results demonstrate the superiority of STco compared to other methods in predicting gene expression profiles from histological images. Additionally, STco has proven its capability to interpret cancer-specific highly expressed genes. Our code is available at https://github.com/shizhiceng/STco.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 50 条
  • [1] Enhancing Gene Expression Prediction from Histology Images with Spatial Transcriptomics Completion
    Mejia, Gabriel
    Ruiz, Daniela
    Cardenas, Paula
    Manrique, Leonardo
    Vega, Daniela
    Arbelaez, Pablo
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IV, 2024, 15004 : 91 - 101
  • [2] Multimodal contrastive learning for spatial gene expression prediction using histology images
    Min, Wenwen
    Shi, Zhiceng
    Zhang, Jun
    Wan, Jun
    Wang, Changmiao
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [3] Benchmarking the translational potential of spatial gene expression prediction from histology
    Wang, Chuhan
    Chan, Adam S.
    Fu, Xiaohang
    Ghazanfar, Shila
    Kim, Jinman
    Patrick, Ellis
    Yang, Jean Y. H.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [4] Gene expression prediction from histology images via hypergraph neural networks
    Li, Bo
    Zhang, Yong
    Wang, Qing
    Zhang, Chengyang
    Li, Mengran
    Wang, Guangyu
    Song, Qianqian
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [5] Digital profiling of gene expression from histology images with linearized attention
    Pizurica, Marija
    Zheng, Yuanning
    Carrillo-Perez, Francisco
    Noor, Humaira
    Yao, Wei
    Wohlfart, Christian
    Vladimirova, Antoaneta
    Marchal, Kathleen
    Gevaert, Olivier
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [6] Innovative super-resolution in spatial transcriptomics: a transformer model exploiting histology images and spatial gene expression
    Zhao, Chongyue
    Xu, Zhongli
    Wang, Xinjun
    Tao, Shiyue
    MacDonald, William A.
    He, Kun
    Poholek, Amanda C.
    Chen, Kong
    Huang, Heng
    Chen, Wei
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [7] Prediction of Parkinson's disease and epilepsy related genes from high resolution spatial gene expression images
    Liscovitch, N.
    Chechik, G.
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2014, 53 : S79 - S80
  • [8] SEPAL: Spatial Gene Expression Prediction from Local Graphs
    Mejia, Gabriel
    Cardenas, Paula
    Ruiz, Daniela
    Castillo, Angela
    Arbelaez, Pablo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2286 - 2295
  • [9] Spatially Resolved Gene Expression Prediction from H&E Histology Images via Bi-modal Contrastive Learning
    Xie, Ronald
    Pang, Kuan
    Chung, Sai W.
    Perciani, Catia T.
    MacParland, Sonya A.
    Wang, Bo
    Bader, Gary D.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Cancer drug sensitivity prediction from routine histology images
    Dawood, Muhammad
    Vu, Quoc Dang
    Young, Lawrence S.
    Branson, Kim
    Jones, Louise
    Rajpoot, Nasir
    Minhas, Fayyaz ul Amir Afsar
    NPJ PRECISION ONCOLOGY, 2024, 8 (01)