Grading Cancer from Liver Histology Images Using Inter and Intra Region Spatial Relations

被引:2
|
作者
Garnier, Mickael [1 ]
Ali, Maya Alsheh [1 ]
Seguin, Johanne [2 ]
Mignet, Nathalie [2 ]
Hurtut, Thomas [3 ]
Wendling, Laurent [1 ]
机构
[1] Univ Paris 05, LIPADE, Paris, France
[2] Univ Paris 05, UPCGI, Paris, France
[3] Ecole Polytech Montreal, Montreal, PQ, Canada
关键词
QUANTIFICATION;
D O I
10.1007/978-3-319-11755-3_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Histology image analysis is widely used in cancer studies since it preserves the tissue structure. In this paper, we propose a framework to grade metastatic liver histology images based on the spatial organization inter and intra regions. After detecting the presence of metastases, we first decompose the image into regions corresponding to the tissue types (sane, cancerous, vessels and gaps). A sample of each type is further decomposed into the contained biological objects (nuclei, stroma, gaps). The spatial relations between all the pairs of regions and objects are measured using a Force Histogram Decomposition. A specimen is described using a Bag of Words model aggregating the features measured on all its randomly acquired images. The grading is made using a Naive Bayes Classifier. Experiments on a 23 mice dataset with CT26 intrasplenic tumors highlight the relevance of the spatial relations with a correct grading rate of 78.95%.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 50 条
  • [31] Enhancing Gene Expression Prediction from Histology Images with Spatial Transcriptomics Completion
    Mejia, Gabriel
    Ruiz, Daniela
    Cardenas, Paula
    Manrique, Leonardo
    Vega, Daniela
    Arbelaez, Pablo
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IV, 2024, 15004 : 91 - 101
  • [32] Automated Grading of Breast Cancer Histopathology Images Using Multilayered Autoencoder
    Mehak, Shakra
    Ashraf, M. Usman
    Zafar, Rabia
    Alghamdi, Ahmed M.
    Alfakeeh, Ahmed S.
    Alassery, Fawaz
    Hamam, Habib
    Shafiq, Muhammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 3407 - 3423
  • [33] Classification of breast cancer histology images using Convolutional Neural Networks
    Araujo, Teresa
    Aresta, Guilherme
    Castro, Eduardo
    Rouco, Jose
    Aguiar, Paulo
    Eloy, Catarina
    Polonia, Antonio
    Campilho, Aurelio
    PLOS ONE, 2017, 12 (06):
  • [34] Decoding Inter- and Intra-Tumor Heterogeneity in Lobular Breast Cancer Using Spatial Transcriptomics and Clustering Analysis
    Serra, Matteo
    Rediti, Mattia
    Lifrange, Frederic
    Venet, David
    Occelli, Nicola
    Collet, Laetitia
    Vincent, Delphine
    Rouas, Ghizlane
    Craciun, Ligia
    Larsimont, Denis
    Vikkula, Miikka
    Duhoux, Francois P.
    Rothe, Francoise
    Sotiriou, Christos
    CANCER RESEARCH, 2023, 83 (05)
  • [35] Deep learning classification of lung cancer histology using CT images
    Tafadzwa L. Chaunzwa
    Ahmed Hosny
    Yiwen Xu
    Andrea Shafer
    Nancy Diao
    Michael Lanuti
    David C. Christiani
    Raymond H. Mak
    Hugo J. W. L. Aerts
    Scientific Reports, 11
  • [36] Classification of breast cancer histology images using MSMV-PFENet
    Liu, Linxian
    Feng, Wenxiang
    Chen, Cheng
    Liu, Manhua
    Qu, Yuan
    Yang, Jiamiao
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [37] Classification of breast cancer histology images using MSMV-PFENet
    Linxian Liu
    Wenxiang Feng
    Cheng Chen
    Manhua Liu
    Yuan Qu
    Jiamiao Yang
    Scientific Reports, 12
  • [38] Classification of lung cancer histology images using deep learning.
    Yang, Yan
    Zhen, Tiantian
    Shi, Huijuan
    Xie, Weidong
    Han, Anjia
    Wang, Xunzhang
    CANCER RESEARCH, 2021, 81 (13)
  • [39] Deep learning classification of lung cancer histology using CT images
    Chaunzwa, Tafadzwa L.
    Hosny, Ahmed
    Xu, Yiwen
    Shafer, Andrea
    Diao, Nancy
    Lanuti, Michael
    Christiani, David C.
    Mak, Raymond H.
    Aerts, Hugo J. W. L.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] Inter- and Intra-Laboratory Variation in the Histopathological Grading of Invasive Breast Cancer in a Nationwide Cohort in the Netherlands
    van Dooijeweert, C.
    van Diest, P. J.
    Overbeek, L. I. H.
    Kuijpers, C. C. H.
    Willems, S. M.
    Deckers, I. A. G.
    JOURNAL OF PATHOLOGY, 2018, 246 : S23 - S23