Ductile crystalline-amorphous nanolaminates

被引:446
|
作者
Wang, Yinmin [1 ]
Li, Ju
Hamza, Alex V.
Barbee, Troy W., Jr.
机构
[1] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA
[2] Lawrence Livermore Natl Lab, Life Sci Directorate, Livermore, CA 94550 USA
[3] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
关键词
metallic glass; size-dependent plasticity; nanocrystalline materials; amorphous-crystalline interface; tensile ductility;
D O I
10.1073/pnas.0702344104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper-zirconium glass nanolaminates. These nanocrystalline-amorphous nanolaminates exhibit a high flow stress of 1.09 +/ 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 +/- 1.7%, which is six to eight times higher than that typically observed in conventional crystalline-crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5-to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous-crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility.
引用
收藏
页码:11155 / 11160
页数:6
相关论文
共 50 条
  • [41] Simultaneous crystalline-amorphous phase evolution during crystallization of polymer systems
    Ezquerra, TA
    Sics, I
    Nogales, A
    Denchev, Z
    Baltá-Calleja, FJ
    EUROPHYSICS LETTERS, 2002, 59 (03): : 417 - 422
  • [42] STRUCTURE AND PROPERTIES OF CRYSTALLINE POLYCHLOROPRENE .1. LINEAR VISCOELASTIC BEHAVIOR OF CRYSTALLINE-AMORPHOUS BLENDS
    ANDREWS, RD
    KAWASAKI, N
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1972, 164 (AUG-S): : 113 - &
  • [43] Kinetics of a first-order crystalline-amorphous transformation in zirconium tungstate
    Yan, Xiaozhi
    Ren, Xiangting
    Sun, Guangai
    Li, Dong
    Li, Xin
    He, Duanwei
    Yang, Wenge
    PHYSICAL REVIEW B, 2017, 95 (22)
  • [44] Crystallization Kinetics of Crystalline-Crystalline and Crystalline-Amorphous Block Copolymers of Linear Polyethylene and Isotactic Polypropylene
    Cicolella, Alessandra
    Scoti, Miriam
    Talarico, Giovanni
    Muller, Alejandro J.
    Di Girolamo, Rocco
    De Rosa, Claudio
    MACROMOLECULES, 2024, 57 (18) : 8748 - 8762
  • [45] Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation
    Han, HyukSu
    Choi, Heechae
    Mhin, Sungwook
    Hong, Yu-Rim
    Kim, Kang Min
    Kwon, Jiseok
    Ali, Ghulam
    Chung, Kyung Yoon
    Je, Minyeong
    Umh, Ha Nee
    Lim, Dong-Ha
    Davey, Kenneth
    Qiao, Shi-Zhang
    Paik, Ungyu
    Song, Taeseup
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (08) : 2443 - 2454
  • [46] THE IMPORTANCE OF IONIZATION AND DISPLACEMENT DAMAGE TO THE CRYSTALLINE-AMORPHOUS TRANSFORMATION OBSERVED IN QUARTZ
    HOWITT, DG
    DENATALE, JF
    RADIATION PHYSICS AND CHEMISTRY, 1983, 21 (05): : 445 - 449
  • [48] Structural evolution of multilayered, crystalline-amorphous diblock copolymer thin films
    Hong, S
    MacKnight, WJ
    Russell, TP
    Gido, SP
    MACROMOLECULES, 2001, 34 (09) : 2876 - 2883
  • [49] SCANNING FORCE MICROSCOPY OF THE CRYSTALLINE-AMORPHOUS INTERFACE OF ULTRADRAWN POLY(ETHYLENE)
    ENG, LM
    JANDT, KD
    FUCHS, H
    PETERMANN, J
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1994, 59 (02): : 145 - 150
  • [50] Elastic Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires
    Khachadorian, Sevak
    Papagelis, Konstantinos
    Ogata, Ken
    Hofmann, Stephan
    Phillips, Matthew R.
    Thomsen, Christian
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (08): : 4219 - 4226