Ductile crystalline-amorphous nanolaminates

被引:446
|
作者
Wang, Yinmin [1 ]
Li, Ju
Hamza, Alex V.
Barbee, Troy W., Jr.
机构
[1] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA
[2] Lawrence Livermore Natl Lab, Life Sci Directorate, Livermore, CA 94550 USA
[3] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
关键词
metallic glass; size-dependent plasticity; nanocrystalline materials; amorphous-crystalline interface; tensile ductility;
D O I
10.1073/pnas.0702344104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper-zirconium glass nanolaminates. These nanocrystalline-amorphous nanolaminates exhibit a high flow stress of 1.09 +/ 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 +/- 1.7%, which is six to eight times higher than that typically observed in conventional crystalline-crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5-to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous-crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility.
引用
收藏
页码:11155 / 11160
页数:6
相关论文
共 50 条
  • [11] Crystalline-Amorphous Nanostructures: Microstructure, Property and Modelling
    Wei, Bingqiang
    Li, Lin
    Shao, Lin
    Wang, Jian
    MATERIALS, 2023, 16 (07)
  • [12] Load-adaptive crystalline-amorphous nanocomposites
    Voevodin, AA
    Zabinski, JS
    JOURNAL OF MATERIALS SCIENCE, 1998, 33 (02) : 319 - 327
  • [13] CRYSTALLINE-AMORPHOUS INTERFACE PACKINGS FOR DISKS AND SPHERES
    STILLINGER, FH
    LUBACHEVSKY, BD
    JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (3-4) : 497 - 514
  • [14] Crystalline-amorphous and amorphous-amorphous transitions in phase-change materials
    Popescu, M.
    Sava, F.
    Velea, A.
    Lorinczi, A.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (37-42) : 1820 - 1823
  • [15] Cyclic crystalline-amorphous transformations by mechanical alloying
    Aoki, K
    El-Eskandarany, MS
    Sumiyama, K
    Suzuki, K
    MECHANICALLY ALLOYED, METASTABLE AND NANOCRYSTALLINE MATERIALS, PART 1, 1998, 269-2 : 119 - 125
  • [16] Structure and shear deformation of metallic crystalline-amorphous interfaces
    Brandl, C.
    Germann, T. C.
    Misra, A.
    ACTA MATERIALIA, 2013, 61 (10) : 3600 - 3611
  • [17] CRYSTALLINE-AMORPHOUS CONTRAST FORMATION IN THERMALLY CRYSTALLIZED SIC
    RUTTENSPERGER, B
    KROTZ, G
    MULLER, G
    DERST, G
    KALBITZER, S
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 137 : 635 - 638
  • [18] Surface orientation effects in crystalline-amorphous silicon interfaces
    Nolan, Michael
    Legesse, Merid
    Fagas, Giorgos
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (43) : 15173 - 15179
  • [19] Ion implantation damage and crystalline-amorphous transition in Ge
    G. Impellizzeri
    S. Mirabella
    M. G. Grimaldi
    Applied Physics A, 2011, 103 : 323 - 328
  • [20] Ion implantation damage and crystalline-amorphous transition in Ge
    Impellizzeri, G.
    Mirabella, S.
    Grimaldi, M. G.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (02): : 323 - 328