CERTAIN FRACTIONAL INTEGRAL AND FRACTIONAL DERIVATIVE FORMULAE WITH THEIR IMAGE FORMULAE INVOLVING GENERALIZED MULTI-INDEX MITTAG-LEFFLER FUNCTION

被引:0
|
作者
Chand, Mehar [1 ]
Kasmaei, Hamed Daei [2 ]
Senol, Mehmet [3 ]
机构
[1] Baba Farid Coll, Dept Math, Bathinda 151001, India
[2] Islamic Azad Univ, Dept Math, Cent Tehran Branch, Tehran 13185768, Iran
[3] Nevsehir Haci Bektas Veli Univ, Fac Sci, Dept Math, TR-50300 Nevsehir, Turkey
关键词
Pochhemmer symbol; Fractional calculus; Fractional derivative; Fractional integration; Mittag-Leffler function; Beta transform; Laplace transform; Whittaker transform;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main objective of this paper is to establish some image formulas by applying the Riemann-Liouville fractional derivative and integral operators to the product of generalized multi-index Mittag-Leffler function E-(alpha j,beta j)m(gamma,q) (.). Some more image formulas are derived by applying integral transforms. The results obtained here are quite general in nature and capable of yielding a very large number of known and (presumably) new results.
引用
收藏
页码:7 / 29
页数:23
相关论文
共 50 条
  • [11] Chebyshev type inequality containing a fractional integral operator with a multi-index Mittag-Leffler function as a kernel
    Jangid, Kamlesh
    Purohit, S. D.
    Nisar, Kottakkaran Sooppy
    Araci, Serkan
    [J]. ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2021, 41 (01): : 61 - 67
  • [12] Boros integral involving the generalized multi-index Mittag-Leffler function and incomplete I-functions
    Kumar, Dinesh
    Ayant, Frederic
    Nirwan, Poonam
    Suthar, D. L.
    [J]. RESEARCH IN MATHEMATICS, 2022, 9 (01): : 1 - 7
  • [13] A Class of Fractional Integral Operators Involving a Certain General Multiindex Mittag-Leffler Function
    Srivastava, H. M.
    Bansal, Manish Kumar
    Harjule, Priyanka
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2024, 75 (08) : 1255 - 1271
  • [14] A Class of Fractional Integral Operators Involving a Certain General Multiindex Mittag-Leffler Function
    H. M. Srivastava
    Manish Kumar Bansal
    Priyanka Harjule
    [J]. Ukrainian Mathematical Journal, 2024, 75 : 1255 - 1271
  • [15] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    Bansal, M. K.
    Jolly, N.
    Jain, R.
    Kumar, Devendra
    [J]. JOURNAL OF ANALYSIS, 2019, 27 (03): : 727 - 740
  • [16] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    M. K. Bansal
    N. Jolly
    R. Jain
    Devendra Kumar
    [J]. The Journal of Analysis, 2019, 27 : 727 - 740
  • [17] The Extended Multi-Index Mittag-Leffler Functions and Their Properties Connected with Fractional Calculus and Integral Transforms
    Agarwal, Praveen
    Suthar, D. L.
    Jain, Shilpi
    Momani, Shaher
    [J]. THAI JOURNAL OF MATHEMATICS, 2022, 20 (03): : 1251 - 1266
  • [18] Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus
    Fernandez, Arran
    Husain, Iftikhar
    [J]. FRACTAL AND FRACTIONAL, 2020, 4 (03) : 1 - 15
  • [19] Pathway fractional integral formula involving an extended Mittag-Leffler function
    Khan, Adnan
    Akhtar, Hafiz Muhammad
    Nisar, K. S.
    Suthar, D. L.
    [J]. ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2022, 42 (03): : 141 - 147
  • [20] EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION APPLIED ON FRACTIONAL INTEGRAL INEQUALITIES
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    Siddique, Muhammad Usama
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1171 - 1184