An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results

被引:9
|
作者
Bansal, M. K. [1 ]
Jolly, N. [2 ]
Jain, R. [2 ]
Kumar, Devendra [3 ]
机构
[1] Govt Engn Coll, Dept Appl Sci, Banswara 327001, Rajasthan, India
[2] Malaviya Natl Inst Technol, Dept Math, Jaipur 302017, Rajasthan, India
[3] Univ Rajasthan, Dept Math, Jaipur 302004, Rajasthan, India
来源
JOURNAL OF ANALYSIS | 2019年 / 27卷 / 03期
关键词
Mittag-Leffler function; Generalized Beta function; Hilfer derivative; Integral operator; 33E12; 33B15; 36A33; 47G10; NUMERICAL ALGORITHM; EQUATION;
D O I
10.1007/s41478-018-0119-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we first introduce and investigate the generalized extended Mittag-Leffler (GEML) function which is represented in the following manner: and propose some of it's integral representations. Next, we present fractional calculus of function of our study. Further, we introduce and study an integral operator whose kernel is generalized extended Mittag-Leffler (GEML) function and point out it's known special cases. Next, we derive some properties of aforementioned integral operator which includes it's composition relationship with right-sided Riemann-Liouville fractional integral operator Ia+gamma and boundedness. Finally, we obtain image of (tau-a)alpha-1 Phi lj;upsilon jQkj;rho jP(beta tau,s,a) under integral operator of our study. The results derived in this paper generalizes the results obtained by ozarslan and Yilmaz (J Inequal Appl 85:1-10, 2014) and Rahman et al. (Sociedad Matematica Mexican. https://doi.org/10.1007/s40590-017-0167-5, 2017).
引用
收藏
页码:727 / 740
页数:14
相关论文
共 50 条
  • [1] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    M. K. Bansal
    N. Jolly
    R. Jain
    Devendra Kumar
    [J]. The Journal of Analysis, 2019, 27 : 727 - 740
  • [2] Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel
    Srivastava, H. M.
    Tomovski, Zivorad
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) : 198 - 210
  • [3] ON CERTAIN FRACTIONAL CALCULUS OPERATORS INVOLVING GENERALIZED MITTAG-LEFFLER FUNCTION
    Kumar, Dinesh
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2016, 3 (02): : 33 - 45
  • [4] On a Unified Mittag-Leffler Function and Associated Fractional Integral Operator
    Zhang, Yanyan
    Farid, Ghulam
    Salleh, Zabidin
    Ahmad, Ayyaz
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [5] Fractional integral operator associated with extended Mittag-Leffler function
    Nadir, Aneela
    Khan, Adnan
    [J]. INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2019, 6 (02): : 1 - 5
  • [6] GRUSS TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR INVOLVING THE EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION
    Set, Erhan
    Akdemir, Ahmet Ocak
    Ozata, Filiz
    [J]. APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (03) : 422 - 434
  • [7] Generalized Mittag-Leffler function and generalized fractional calculus operators
    Kilbas, AA
    Saigo, M
    Saxena, RK
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) : 31 - 49
  • [8] Generalized Mittag-Leffler Function Associated with Weyl Fractional Calculus Operators
    Faraj, Ahmad
    Salim, Tariq
    Sadek, Safaa
    Ismail, Jamal
    [J]. JOURNAL OF MATHEMATICS, 2013, 2013
  • [9] CERTAIN RELATION OF GENERALIZED FRACTIONAL CALCULUS ASSOCIATED WITH THE GENERALIZED MITTAG-LEFFLER FUNCTION
    Gupta, Rajeev Kumar
    Shaktawat, Bhupender Singh
    Kumar, Dinesh
    [J]. JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2016, 15 (03): : 117 - 126
  • [10] A FRACTIONAL INTEGRAL OPERATOR INVOLVING THE MITTAG-LEFFLER TYPE FUNCTION WITH FOUR PARAMETERS
    Agarwal, Praveen
    Milovanovic, Gradimir V.
    Nisar, K. S.
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (05): : 597 - 605