An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results

被引:9
|
作者
Bansal, M. K. [1 ]
Jolly, N. [2 ]
Jain, R. [2 ]
Kumar, Devendra [3 ]
机构
[1] Govt Engn Coll, Dept Appl Sci, Banswara 327001, Rajasthan, India
[2] Malaviya Natl Inst Technol, Dept Math, Jaipur 302017, Rajasthan, India
[3] Univ Rajasthan, Dept Math, Jaipur 302004, Rajasthan, India
来源
JOURNAL OF ANALYSIS | 2019年 / 27卷 / 03期
关键词
Mittag-Leffler function; Generalized Beta function; Hilfer derivative; Integral operator; 33E12; 33B15; 36A33; 47G10; NUMERICAL ALGORITHM; EQUATION;
D O I
10.1007/s41478-018-0119-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we first introduce and investigate the generalized extended Mittag-Leffler (GEML) function which is represented in the following manner: and propose some of it's integral representations. Next, we present fractional calculus of function of our study. Further, we introduce and study an integral operator whose kernel is generalized extended Mittag-Leffler (GEML) function and point out it's known special cases. Next, we derive some properties of aforementioned integral operator which includes it's composition relationship with right-sided Riemann-Liouville fractional integral operator Ia+gamma and boundedness. Finally, we obtain image of (tau-a)alpha-1 Phi lj;upsilon jQkj;rho jP(beta tau,s,a) under integral operator of our study. The results derived in this paper generalizes the results obtained by ozarslan and Yilmaz (J Inequal Appl 85:1-10, 2014) and Rahman et al. (Sociedad Matematica Mexican. https://doi.org/10.1007/s40590-017-0167-5, 2017).
引用
收藏
页码:727 / 740
页数:14
相关论文
共 50 条
  • [41] A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function
    Srivastava, H. M.
    Bansal, Manish
    Harjule, Priyanka
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) : 6108 - 6121
  • [42] Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function
    Ghulam Abbas
    Khuram Ali Khan
    Ghulam Farid
    Atiq Ur Rehman
    Journal of Inequalities and Applications, 2017
  • [43] FINITE INTEGRAL FORMULA INVOLVING ALEPH-FUNCTION AND GENERALIZED MITTAG-LEFFLER FUNCTION
    Kumar, D.
    Ayant, F. Y.
    Singh, A.
    Banerji, P. K.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (01): : 96 - 109
  • [44] Variational Problems Involving a Generalized Fractional Derivative with Dependence on the Mittag-Leffler Function
    Almeida, Ricardo
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [45] FRACTIONAL INTEGRAL INEQUALITIES OF GRUSS TYPE VIA GENERALIZED MITTAG-LEFFLER FUNCTION
    Farid, G.
    Rehman, A. U.
    Mishra, Vishnu Narayan
    Mehmood, S.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (04): : 548 - 558
  • [46] Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function
    Abbas, Ghulam
    Khan, Khuram Ali
    Farid, Ghulam
    Rehman, Atiq Ur
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [47] Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus
    Roberto Garrappa
    Marina Popolizio
    Journal of Scientific Computing, 2018, 77 : 129 - 153
  • [48] Integral transform with the extended generalized Mittag-Leffler function
    Kilbas, A.A.
    Koroleva, A.A.
    Mathematical Modelling and Analysis, 2006, 11 (02) : 173 - 186
  • [49] Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function
    Khan, Owais
    Araci, Serkan
    Saif, Mohd
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 20 (02): : 122 - 130
  • [50] Variational calculus involving nonlocal fractional derivative with Mittag-Leffler kernel
    Chatibi, Y.
    El Kinani, E. H.
    Ouhadan, A.
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 117 - 121