The Quenched Critical Point for Self-Avoiding Walk on Random Conductors

被引:1
|
作者
Chino, Yuki [1 ]
Sakai, Akira [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 060, Japan
关键词
Disordered systems; Self-avoiding walk; Random medium; Critical point; RANDOM-ENVIRONMENTS;
D O I
10.1007/s10955-016-1477-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following similar analysis to that in Lacoin (Probab Theory Relat Fields 159: 777-808, 2014), we can show that the quenched critical point for self-avoiding walk on random conductors on Z(d) is almost surely a constant, which does not depend on the location of the reference point. We provide upper and lower bounds which are valid for all d >= 1.
引用
收藏
页码:754 / 764
页数:11
相关论文
共 50 条
  • [21] A self-avoiding walk model of random copolymer adsorption
    Orlandini, E
    Tesi, MC
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (03): : 469 - 477
  • [22] Canonical ensemble of particles in a self-avoiding random walk
    V. I. Alkhimov
    Theoretical and Mathematical Physics, 2017, 191 : 558 - 571
  • [23] RANDOM-WALK ON A SELF-AVOIDING WALK WITH SUPERCONDUCTING LOCAL BRIDGES
    BHAN, HL
    BHAT, VK
    SINGH, Y
    MANNA, SS
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 74 (03): : 389 - 393
  • [24] ON THE PROBABILITY THAT SELF-AVOIDING WALK ENDS AT A GIVEN POINT
    Duminil-Copin, Hugo
    Glazman, Alexander
    Hammond, Alan
    Manolescu, Ioan
    ANNALS OF PROBABILITY, 2016, 44 (02): : 955 - 983
  • [25] CRITICAL DIMENSIONALITY AND EXPONENT OF THE TRUE SELF-AVOIDING WALK
    PIETRONERO, L
    PHYSICAL REVIEW B, 1983, 27 (09): : 5887 - 5889
  • [26] Self-avoiding tethered membranes with quenched random internal disorders
    Mori, S
    PHYSICAL REVIEW E, 1996, 54 (01): : 338 - 348
  • [27] THE WRITHE OF A SELF-AVOIDING WALK
    ORLANDINI, E
    TESI, MC
    WHITTINGTON, SG
    SUMNERS, DW
    VANRENSBURG, EJJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10): : L333 - L338
  • [28] Continuous time 'true' self-avoiding random walk on Z
    Toth, Balint
    Veto, Balint
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2011, 8 : 59 - 75
  • [29] Self-avoiding random walk with multiple site weightings and restrictions
    Krawczyk, J
    Prellberg, T
    Owczarek, AL
    Rechnitzer, A
    PHYSICAL REVIEW LETTERS, 2006, 96 (24)
  • [30] CORRELATIONS IN A SELF-AVOIDING WALK
    DOMB, C
    HIOE, FT
    JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (05): : 1920 - &