Continuous time 'true' self-avoiding random walk on Z

被引:0
|
作者
Toth, Balint [1 ]
Veto, Balint [1 ]
机构
[1] Budapest Univ Technol BME, Inst Math, H-1111 Budapest, Hungary
关键词
self-repelling random walk; one dimension; local time; limit theorems; Ray-Knight approach; super-diffusive behaviour;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the continuous time version of the 'true' or 'myopic' self-avoiding random walk with site repulsion in 1d. The Ray Knight-type method which was applied in (Toth, 1995) to the discrete time and edge repulsion case is applicable to this model with some modifications. We present a limit theorem for the local time of the walk and a local limit theorem for the displacement.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 50 条
  • [1] On Continuous-Time Self-Avoiding Random Walk in Dimension Four
    Suemi Rodríguez-Romo
    Vladimir Tchijov
    Journal of Statistical Physics, 1998, 90 : 767 - 781
  • [2] On continuous-time self-avoiding random walk in dimension four
    Rodriguez-Romo, S
    Tchijov, V
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) : 767 - 781
  • [3] TRUE SELF-AVOIDING WALK ON FRACTALS
    DAURIAC, JCA
    RAMMAL, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (01): : L15 - L20
  • [4] RENORMALIZATION OF THE TRUE SELF-AVOIDING WALK
    OBUKHOV, SP
    PELITI, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (05): : L147 - L151
  • [5] The ''true'' self-avoiding walk with bond repulsion on Z: Limit theorems
    Toth, B
    ANNALS OF PROBABILITY, 1995, 23 (04): : 1523 - 1556
  • [6] Large Deviations of Convex Hulls of the "True" Self-Avoiding Random Walk
    Schawe, Hendrik
    Hartmann, Alexander K.
    XXX IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS, 2019, 1290
  • [7] Random walk on the self-avoiding tree
    Huynh, Cong Bang
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (02): : 1507 - 1515
  • [8] A SELF-AVOIDING WALK ON RANDOM STRIPS
    DERRIDA, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (03): : L119 - L125
  • [9] A SELF-AVOIDING RANDOM-WALK
    LAWLER, GF
    DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 655 - 693
  • [10] TRUE SELF-AVOIDING WALK IN ONE DIMENSION
    BERNASCONI, J
    PIETRONERO, L
    PHYSICAL REVIEW B, 1984, 29 (09): : 5196 - 5198