Nuclear measurements of fuel-shell mix in inertial confinement fusion implosions at OMEGA

被引:15
|
作者
Rygg, J. R. [1 ]
Frenje, J. A.
Li, C. K.
Seguin, F. H.
Petrasso, R. D.
Delettrez, J. A.
Glebov, V. Yu.
Goncharov, V. N.
Meyerhofer, D. D.
Radha, P. B.
Regan, S. P.
Sangster, T. C.
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
关键词
D O I
10.1063/1.2671761
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Direct drive spherical implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have shown that increased capsule convergence results in increased susceptibility to fuel-shell mix. Mix results from saturation of the Rayleigh-Taylor instability, leading to small-scale, turbulent eddies and atomic-level mixing of the high-density compressed shell with hot, low-density fuel from the core. To sensitively probe the extent of mix, nuclear yields were measured from implosions of capsules filled with pure He-3. The plastic capsule shell contains a deuterated plastic (CD) layer either on the inner surface or offset from the inner surface by 1 mu m. Mixing of D from the shell with hot He-3 in the core is necessary to produce 14.7 MeV (DHe)-He-3 protons in such capsules. (DHe)-He-3-proton spectral measurements have been used to constrain the amount of mix at shock time, to demonstrate that some of the fuel mixes with the offset CD layer, and that capsules with a higher initial fill density or thicker shell are less susceptible to the effects of mix. (C) 2007 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Neutron imaging of inertial confinement fusion implosions
    Fittinghoff, D. N.
    Birge, N.
    Geppert-Kleinrath, V.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (02):
  • [22] Ensemble simulations of inertial confinement fusion implosions
    Nora, Ryan
    Peterson, Jayson Luc
    Spears, Brian Keith
    Field, John Everett
    Brandon, Scott
    STATISTICAL ANALYSIS AND DATA MINING, 2017, 10 (04) : 230 - 237
  • [23] An x-ray penumbral imager for measurements of electron-temperature profiles in inertial confinement fusion implosions at OMEGA
    Adrian, P. J.
    Frenje, J.
    Aguirre, B.
    Bachmann, B.
    Birkel, A.
    Johnson, M. Gatu
    Kabadi, N. V.
    Lahmann, B.
    Li, C. K.
    Mannion, O. M.
    Martin, W.
    Mohamed, Z. L.
    Regan, S. P.
    Rinderknecht, H. G.
    Scheiner, B.
    Schmitt, M. J.
    Seguin, F. H.
    Shah, R. C.
    Sio, H.
    Sorce, C.
    Sutcliffe, G. D.
    Petrasso, R. D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04):
  • [24] Synthetic nuclear diagnostics for inferring plasma properties of inertial confinement fusion implosions
    Crilly, A. J.
    Appelbe, B. D.
    McGlinchey, K.
    Walsh, C. A.
    Tong, J. K.
    Boxall, A. B.
    Chittenden, J. P.
    PHYSICS OF PLASMAS, 2018, 25 (12)
  • [25] Inferring thermal ion temperature and residual kinetic energy from nuclear measurements in inertial confinement fusion implosions
    Woo, K. M.
    Betti, R.
    Mannion, O. M.
    Forrest, C. J.
    Knauer, J. P.
    Goncharov, V. N.
    Radha, P. B.
    Patel, D.
    Gopalaswamy, V.
    Glebov, V. Yu.
    PHYSICS OF PLASMAS, 2020, 27 (06)
  • [26] Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
    Ma, T.
    Patel, P. K.
    Izumi, N.
    Springer, P. T.
    Key, M. H.
    Atherton, L. J.
    Benedetti, L. R.
    Bradley, D. K.
    Callahan, D. A.
    Celliers, P. M.
    Cerjan, C. J.
    Clark, D. S.
    Dewald, E. L.
    Dixit, S. N.
    Doeppner, T.
    Edgell, D. H.
    Epstein, R.
    Glenn, S.
    Grim, G.
    Haan, S. W.
    Hammel, B. A.
    Hicks, D.
    Hsing, W. W.
    Jones, O. S.
    Khan, S. F.
    Kilkenny, J. D.
    Kline, J. L.
    Kyrala, G. A.
    Landen, O. L.
    Le Pape, S.
    MacGowan, B. J.
    Mackinnon, A. J.
    MacPhee, A. G.
    Meezan, N. B.
    Moody, J. D.
    Pak, A.
    Parham, T.
    Park, H. -S.
    Ralph, J. E.
    Regan, S. P.
    Remington, B. A.
    Robey, H. F.
    Ross, J. S.
    Spears, B. K.
    Smalyuk, V.
    Suter, L. J.
    Tommasini, R.
    Town, R. P.
    Weber, S. V.
    Lindl, J. D.
    PHYSICAL REVIEW LETTERS, 2013, 111 (08)
  • [27] Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
    Michel, D. T.
    Hu, S. X.
    Davis, A. K.
    Glebov, V. Yu.
    Goncharov, V. N.
    Igumenshchev, I. V.
    Radha, P. B.
    Stoeckl, C.
    Froula, D. H.
    PHYSICAL REVIEW E, 2017, 95 (05)
  • [28] Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
    Ma, T.
    Hurricane, O. A.
    Callahan, D. A.
    Barrios, M. A.
    Casey, D. T.
    Dewald, E. L.
    Dittrich, T. R.
    Doeppner, T.
    Haan, S. W.
    Hinkel, D. E.
    Hopkins, L. F. Berzak
    Le Pape, S.
    MacPhee, A. G.
    Pak, A.
    Park, H. -S.
    Patel, P. K.
    Remington, B. A.
    Robey, H. F.
    Salmonson, J. D.
    Springer, P. T.
    Tommasini, R.
    Benedetti, L. R.
    Bionta, R.
    Bond, E.
    Bradley, D. K.
    Caggiano, J.
    Celliers, P.
    Cerjan, C. J.
    Church, J. A.
    Dixit, S.
    Dylla-Spears, R.
    Edgell, D.
    Edwards, M. J.
    Field, J.
    Fittinghoff, D. N.
    Frenje, J. A.
    Johnson, M. Gatu
    Grim, G.
    Guler, N.
    Hatarik, R.
    Herrmann, H. W.
    Hsing, W. W.
    Izumi, N.
    Jones, O. S.
    Khan, S. F.
    Kilkenny, J. D.
    Knauer, J.
    Kohut, T.
    Kozioziemski, B.
    Kritcher, A.
    PHYSICAL REVIEW LETTERS, 2015, 114 (14)
  • [29] Magnetization around mix jets entering inertial confinement fusion fuel
    Sadler, James D.
    Li, Hui
    Haines, Brian M.
    PHYSICS OF PLASMAS, 2020, 27 (07)
  • [30] Fuel-ion diffusion in shock-driven inertial confinement fusion implosions
    Sio, Hong
    Li, Chikang
    Parker, Cody E.
    Lahmann, Brandon
    Le, Ari
    Atzeni, Stefano
    Petrasso, Richard D.
    MATTER AND RADIATION AT EXTREMES, 2019, 4 (05)