Arithmetic properties of the sequence of derangements

被引:6
|
作者
Miska, Piotr [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Krakow, Poland
关键词
Derangement; Hensel's lemma; p-adic valuation; Periodicity; Prime number; FACTORIALS; SUMS;
D O I
10.1016/j.jnt.2015.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sequence of derangements is given by the formula D-0 = 1, D-n = nD(n-1) + (-1)(n) n > 0. It is a classical object appearing in combinatorics and number theory. In this paper we consider such arithmetic properties of the sequence of derangements as: periodicity modulo d, where d is an element of N+, p-adic valuations and prime divisors. Next, we use them to establish arithmetic properties of the sequences of even and odd derangements. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 145
页数:32
相关论文
共 50 条
  • [31] On k-Circulant Matrices with Arithmetic Sequence
    Radicic, Biljana
    FILOMAT, 2017, 31 (08) : 2517 - 2525
  • [32] BOUNDED PRIME FACTORS FOR TERMS IN AN ARITHMETIC SEQUENCE
    GOLOMB, SW
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (09): : 790 - 790
  • [33] ARITHMETIC CODING OF MESSAGES USING RANDOM SEQUENCE
    Potapov, V. N.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2008, 2 (02): : 131 - 133
  • [34] DERANGEMENTS
    PRIELIPP, B
    KUENZI, NJ
    CARLITZ, L
    SCOVILLE, RA
    BERGER, M
    BLOOM, DM
    BUDA, PD
    CHONE, J
    GREENING, MG
    JOHNSON, W
    LASS, H
    LOSSERS, OP
    MATTICS, LE
    MOSER, WOJ
    MURRAY, PJ
    SANCHEZ, WJ
    SCHMITT, FG
    STENGER, A
    WANG, ETH
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (04): : 438 - 439
  • [35] DERANGEMENTS
    PENRICE, SG
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (05): : 480 - 480
  • [36] Arithmetic analytical function properties
    Stackel, P
    ACTA MATHEMATICA, 1902, 25 (01) : 371 - 383
  • [37] Arithmetic properties of the partition function
    Scott Ahlgren
    Matthew Boylan
    Inventiones mathematicae, 2003, 153 : 487 - 502
  • [38] Embedding functors and their arithmetic properties
    Lee, Ting-Yu
    COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (03) : 671 - 717
  • [39] On arithmetic properties of Cantor sets
    Lu Cui
    Minghui Ma
    Science China Mathematics, 2022, 65 : 2035 - 2060
  • [40] On arithmetic properties of Cantor sets
    Cui, Lu
    Ma, Minghui
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (10) : 2035 - 2060