Arithmetic properties of the sequence of derangements

被引:6
|
作者
Miska, Piotr [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Krakow, Poland
关键词
Derangement; Hensel's lemma; p-adic valuation; Periodicity; Prime number; FACTORIALS; SUMS;
D O I
10.1016/j.jnt.2015.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sequence of derangements is given by the formula D-0 = 1, D-n = nD(n-1) + (-1)(n) n > 0. It is a classical object appearing in combinatorics and number theory. In this paper we consider such arithmetic properties of the sequence of derangements as: periodicity modulo d, where d is an element of N+, p-adic valuations and prime divisors. Next, we use them to establish arithmetic properties of the sequences of even and odd derangements. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 145
页数:32
相关论文
共 50 条
  • [21] Arithmetic properties of polynomials
    Yong Zhang
    Zhongyan Shen
    Periodica Mathematica Hungarica, 2020, 81 : 134 - 148
  • [22] ON ARITHMETIC PROPERTIES OF SUMSETS
    Balog, A.
    Rivat, J.
    Sarkoezy, A.
    ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 18 - 42
  • [23] Arithmetic properties of polynomials
    Zhang, Yong
    Shen, Zhongyan
    PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (01) : 134 - 148
  • [24] On arithmetic properties of sumsets
    A. Balog
    J. Rivat
    A. Sárközy
    Acta Mathematica Hungarica, 2014, 144 : 18 - 42
  • [25] FLIPPING PROPERTIES IN ARITHMETIC
    KIRBY, LAS
    JOURNAL OF SYMBOLIC LOGIC, 1982, 47 (02) : 416 - 422
  • [26] Arithmetic properties in pullbacks
    Houston, Evan
    Taylor, John
    JOURNAL OF ALGEBRA, 2007, 310 (01) : 235 - 260
  • [27] Asymptotic formulas for sequence factorial of arithmetic progression
    Asiru, Muniru A.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (06) : 947 - 952
  • [28] Arithmetic sequence as a bridge between conceptual fields
    Zazkis R.
    Liljedahl P.
    Canadian Journal of Science, Mathematics and Technology Education, 2002, 2 (1) : 91 - 118
  • [29] A PRIME GAP OF 682 AND A PRIME ARITHMETIC SEQUENCE
    WEINTRAUB, S
    BIT, 1982, 22 (04): : 538 - 538
  • [30] BRIDGING ARITHMETIC AND ALGEBRA: EVOLUTION OF A TEACHING SEQUENCE
    Banerjee, Rakhi
    Subramaniam, K.
    Naik, Shweta
    PROCEEDINGS OF THE JOINT MEETING OF PME 32 AND PME-NA XXX, VOL 2, 2008, : 121 - 128