Data visualization and feature selection: New algorithms for nongaussian data

被引:0
|
作者
Yang, HH [1 ]
Moody, J [1 ]
机构
[1] Oregon Grad Inst Sci & Technol, Beaverton, OR 97006 USA
关键词
feature selection; joint mutual information; ICA; visualization; classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data visualization and feature selection methods are proposed based on the joint mutual information and ICA. The visualization methods can find many good 2-D projections for high dimensional data interpretation, which cannot be easily found by the other existing methods. The new variable selection method is found to be better in eliminating redundancy in the inputs than other methods based on simple mutual information. The efficacy of the methods is illustrated on a radar signal analysis problem to find 2-D viewing coordinates for data visualization and to select inputs for a neural network classifier.
引用
收藏
页码:687 / 693
页数:7
相关论文
共 50 条
  • [21] Comparing Multiobjective Evolutionary Algorithms for Cancer Data Microarray Feature Selection
    Sol Dussaut, Julieta
    Javier Vidal, Pablo
    Ponzoni, Ignacio
    Carolina Olivera, Ana
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 149 - 156
  • [22] Relevancy contemplation in medical data analytics and ranking of feature selection algorithms
    Seba, P. Antony
    Benifa, J. V. Bibal
    ETRI JOURNAL, 2023, 45 (03) : 448 - 461
  • [23] FEATURE SELECTION IN THE ANALYSIS OF TUMOR MARKER DATA USING EVOLUTIONARY ALGORITHMS
    Winkler, Stephan M.
    Affenzeller, Michael
    Kronberger, Gabriel
    Kommenda, Michael
    Wagner, Stefan
    Jacak, Witold
    Stekel, Herbert
    22ND EUROPEAN MODELING AND SIMULATION SYMPOSIUM (EMSS 2010), 2010, : 1 - 6
  • [24] Classification and feature selection algorithms for multi-class CGH data
    Liu, Jun
    Ranka, Sanjay
    Kahveci, Tamer
    BIOINFORMATICS, 2008, 24 (13) : I86 - I95
  • [25] Integrating Data Augmentation in Evolutionary Algorithms for Feature Selection: A Preliminary Study
    D'Alessandro, Tiziana
    De Stefano, Claudio
    Fontanella, Francesco
    Nardone, Emanuele
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I, 2024, 14634 : 397 - 412
  • [26] A Study of Metaheuristic Algorithms for High Dimensional Feature Selection on Microarray Data
    Dankolo, Muhammad Nasiru
    Radzi, Nor Haizan Mohamed
    Sallehuddin, Roselina
    Mustaffa, Noorfa Haszlinna
    13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017), 2017, 1905
  • [27] Multiobjective feature selection for microarray data via distributed parallel algorithms
    Cao, Bin
    Zhao, Jianwei
    Yang, Po
    Yang, Peng
    Liu, Xin
    Qi, Jun
    Simpson, Andrew
    Elhoseny, Mohamed
    Mehmoode, Irfan
    Muhammad, Khan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 100 : 952 - 981
  • [28] Data Driven Feature Selection for Machine Learning Algorithms in Computer Vision
    Zhang, Fan
    Li, Wei
    Zhang, Yifan
    Feng, Zhiyong
    IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (06): : 4262 - 4272
  • [29] Application of Data Mining Algorithms for Feature Selection and Prediction of Diabetic Retinopathy
    Oladele, Tinuke O.
    Ogundokun, Roseline Oluwaseun
    Kayode, Aderonke Anthonia
    Adegun, Adekanmi Adeyinka
    Adebiyi, Marion Oluwabunmi
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT V: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 14, 2019, PROCEEDINGS, PART V, 2019, 11623 : 716 - 730
  • [30] Feature Selection Algorithms as One of the Python']Python Data Analytical Tools
    Pilnenskiy, Nikita
    Smetannikov, Ivan
    FUTURE INTERNET, 2020, 12 (03):