Integrating Data Augmentation in Evolutionary Algorithms for Feature Selection: A Preliminary Study

被引:0
|
作者
D'Alessandro, Tiziana [1 ]
De Stefano, Claudio [1 ]
Fontanella, Francesco [1 ]
Nardone, Emanuele [1 ]
机构
[1] Univ Cassino & Southern Lazio, Dept Elect & Informat Engn DIEI, Via G Biasio 43, I-03043 Cassino, FR, Italy
关键词
CLASSIFICATION;
D O I
10.1007/978-3-031-56852-7_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many machine learning applications, there are hundreds or even thousands of features available, and selecting the smallest subset of relevant features is a challenging task. More recently, researchers have investigated how data augmentation affects feature selection performance. Although evolutionary algorithms have been widely used for feature selection, no studies have investigated how data augmentation affects their performance on this challenging task. The study presented in this paper investigates how data augmentation affects the performance of evolutionary algorithms on feature selection problems. To this aim, we have tested Genetic Algorithms and Particle Swarm Optimization and compared their performance with two widely used feature selection algorithms. The experimental results confirmed that data augmentation is a promising tool for improving the performance of evolutionary algorithms for feature selection.
引用
收藏
页码:397 / 412
页数:16
相关论文
共 50 条
  • [1] A Preliminary Study on the Use of Fuzzy Rough Set Based Feature Selection for Improving Evolutionary Instance Selection Algorithms
    Derrac, Joaquin
    Cornelis, Chris
    Garcia, Salvador
    Herrera, Francisco
    Advances in Computational Intelligence, IWANN 2011, Pt I, 2011, 6691 : 174 - 182
  • [2] Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
    Dussaut, J. S.
    Ponzoni, I
    Olivera, A. C.
    Vidal, P. J.
    ENTRE CIENCIA E INGENIERIA, 2020, 14 (28): : 40 - 45
  • [3] FEATURE SELECTION IN THE ANALYSIS OF TUMOR MARKER DATA USING EVOLUTIONARY ALGORITHMS
    Winkler, Stephan M.
    Affenzeller, Michael
    Kronberger, Gabriel
    Kommenda, Michael
    Wagner, Stefan
    Jacak, Witold
    Stekel, Herbert
    22ND EUROPEAN MODELING AND SIMULATION SYMPOSIUM (EMSS 2010), 2010, : 1 - 6
  • [4] Comparing Multiobjective Evolutionary Algorithms for Cancer Data Microarray Feature Selection
    Sol Dussaut, Julieta
    Javier Vidal, Pablo
    Ponzoni, Ignacio
    Carolina Olivera, Ana
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 149 - 156
  • [5] Feature Selection and Interpretable Feature Transformation: A Preliminary Study on Feature Engineering for Classification Algorithms
    Tallon-Ballesteros, Antonio J.
    Tuba, Milan
    Xue, Bing
    Hashimoto, Takako
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2018), PT II, 2018, 11315 : 280 - 287
  • [6] Evolutionary feature selection for imbalanced data
    Tusell Rey, Claudia C.
    Salinas Garcia, Viridiana
    Villuendas-Rey, Yenny
    2023 MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE, ENC, 2024,
  • [7] Toward integrating feature selection algorithms for classification and clustering
    Liu, H
    Yu, L
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (04) : 491 - 502
  • [8] Feature selection using evolutionary algorithms: a data-constrained environment case study to predict tax defaulters
    Sharma C.
    Agnihotri M.
    Rathod A.
    Shenoy K.B.A.
    International Journal of Cloud Computing, 2022, 11 (04) : 345 - 355
  • [9] Instance selection and feature weighting using evolutionary algorithms
    Ramirez-Cruz, Jose-Federico
    Alarcon-Aquino, Vicente
    Fuentes, Olac
    Garcia-Banuelos, Luciano
    CIC 2006: 15TH INTERNATIONAL CONFERENCE ON COMPUTING, PROCEEDINGS, 2006, : 73 - +
  • [10] A Literature Review on Feature Selection using Evolutionary Algorithms
    Sekhar, P. Rathna
    Sujatha, B.
    2020 7TH IEEE INTERNATIONAL CONFERENCE ON SMART STRUCTURES AND SYSTEMS (ICSSS 2020), 2020, : 4 - 11