3D deconvolution in Fourier integral microscopy

被引:4
|
作者
Stefanoiu, Anca [1 ]
Scrofani, Gabriele [2 ]
Saavedra, Genaro [2 ]
Martinez-Corral, Manuel [2 ]
Lasser, Tobias [1 ]
机构
[1] Tech Univ Munich, Dept Informat, Munich, Germany
[2] Univ Valencia, Opt Dept, Valencia, Spain
来源
COMPUTATIONAL IMAGING V | 2020年 / 11396卷
关键词
light field microscopy; Fourier integral imaging; deconvolution; 3D reconstruction; expectation maximization; penalized likelihood; regularization; total variation; LIGHT-FIELD; RESOLUTION; ALGORITHM; LIKELIHOOD; REMOVAL;
D O I
10.1117/12.2558516
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fourier integral microscopy (FiMic), also referred to as Fourier light field microscopy (FLFM) in the literature, was recently proposed as an alternative to conventional light field microscopy (LFM). FiMic is designed to overcome the non-uniform lateral resolution limitation specific to LFM. By inserting a micro-lens array at the aperture stop of the microscope objective, the Fourier integral microscope directly captures in a single-shot a series of orthographic views of the scene from different viewpoints. We propose an algorithm for the deconvolution of FiMic data by combining the well known Maximum Likelihood Expectation (MLEM) method with total variation (TV) regularization to cope with noise amplification in conventional Richardson-Lucy deconvolution.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Blind Deconvolution of 3D Fluorescence Microscopy Using Depth-Variant Asymmetric PSF
    Kim, Boyoung
    Naemura, Takeshi
    MICROSCOPY RESEARCH AND TECHNIQUE, 2016, 79 (06) : 480 - 494
  • [22] Spectral analysis of a SVPWM modulated matrix converter based on 3D Fourier integral
    Qiu Lin
    Xu Lie
    Li Yongdong
    Huang Xiaoyan
    Fang Youtong
    JOURNAL OF ENGINEERING-JOE, 2018, (13): : 411 - 416
  • [23] Deconvolution methods for 3-D fluorescence microscopy images
    Sarder, P
    Nehorai, A
    IEEE SIGNAL PROCESSING MAGAZINE, 2006, 23 (03) : 32 - 45
  • [24] SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos
    Sylvain Prigent
    Hoai-Nam Nguyen
    Ludovic Leconte
    Cesar Augusto Valades-Cruz
    Bassam Hajj
    Jean Salamero
    Charles Kervrann
    Scientific Reports, 13 (1)
  • [25] Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy
    Boyoung Kim
    Takeshi Naemura
    Scientific Reports, 5
  • [26] A novel variational approach for multiphoton microscopy image restoration: from PSF estimation to 3D deconvolution
    Ajdenbaum, Julien
    Chouzenoux, Emilie
    Lefort, Claire
    Martin, Segolene
    Pesquet, Jean-Christophe
    INVERSE PROBLEMS, 2024, 40 (06)
  • [27] Quantitative 3D Microscopy
    Materna-Morris, Edeltraud
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2006, 43 (09): : 435 - 437
  • [28] SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos
    Prigent, Sylvain
    Nguyen, Hoai-Nam
    Leconte, Ludovic
    Valades-Cruz, Cesar Augusto
    Hajj, Bassam
    Salamero, Jean
    Kervrann, Charles
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [29] Quantification in optical sectioning microscopy: a comparison of some deconvolution algorithms in view of 3D image segmentation
    Chomik, A
    Dieterlen, A
    Xu, C
    Haeberle, O
    Meyer, JJ
    Jacquey, S
    JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1997, 28 (06): : 225 - 233
  • [30] Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy
    Kim, Boyoung
    Naemura, Takeshi
    SCIENTIFIC REPORTS, 2015, 5