Sparsity-based Image Reconstruction Techniques for ISAR Imaging

被引:0
|
作者
Raj, Raghu G. [1 ]
Lipps, Ronald [1 ]
Bottoms, A. Maitland [1 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
来源
2014 IEEE RADAR CONFERENCE | 2014年
关键词
ISAR; Imaging; Sparsity; Motion Compensation; Compressive Sensing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present novel techniques for ISAR imaging via a Sparsity-based image reconstruction methodology. The latter offer a distinct advantage of Fourier based reconstruction techniques by offering the flexibility of using different basis functions to represent the underlying scene structure being imaged. We derive our ISAR algorithm in detail and present experimental results on real ISAR data showing its superiority over traditional Fourier based image reconstruction. We also demonstrate how our formulation of the ISAR imaging problem overcomes some of limitations associated previous approaches to CS (Compressive Sensing) based ISAR imaging in the literature.
引用
收藏
页码:974 / 979
页数:6
相关论文
共 50 条
  • [31] Parametric comparison between sparsity-based and deep learning-based image reconstruction of super-resolution fluorescence microscopy
    Chen, Junjie
    Chen, Yun
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (08) : 5246 - 5260
  • [32] Computational Photoacoustic Imaging with Sparsity-based Optimization of the Initial Pressure Distribution
    Shang, Ruibo
    Archibald, Richard
    Gelb, Anne
    Luke, Geoffrey P.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2018, 2018, 10494
  • [33] Sparsity-based single-shot subwavelength coherent diffractive imaging
    Szameit, A.
    Shechtman, Y.
    Osherovich, E.
    Bullkich, E.
    Sidorenko, P.
    Dana, H.
    Steiner, S.
    Kley, E. B.
    Gazit, S.
    Cohen-Hyams, T.
    Shoham, S.
    Zibulevsky, M.
    Yavneh, I.
    Eldar, Y. C.
    Cohen, O.
    Segev, M.
    NATURE MATERIALS, 2012, 11 (05) : 455 - 459
  • [34] Multiple Measurement Vector Model for Sparsity-Based Vascular Ultrasound Imaging
    Dogan, Didem
    Kruizinga, Pieter
    Bosch, Johannes G.
    Leus, Geert
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 501 - 505
  • [35] Sparsity-based Compressed Covariance Sensing for Spectrum Reconstruction in Blade Tip Timing
    Cao, Jiahui
    Tian, Shaohua
    Wu, Shuming
    Yang, Zhibo
    Chen, Xuefeng
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [36] SUSHI: Sparsity-Based Ultrasound Super-Resolution Hemodynamic Imaging
    Bar-Zion, Avinoam
    Solomon, Oren
    Tremblay-Darveau, Charles
    Adam, Dan
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (12) : 2365 - 2380
  • [37] Sparsity-based single-shot subwavelength coherent diffractive imaging
    Osherovich, Eliyahu
    Shechtman, Yoav
    Szameit, Alexander
    Sidorenko, Pavel
    Bullkich, Elad
    Gazit, Snir
    Shoham, Shy
    Kley, Ernst B.
    Zibulevsky, Michael
    Yavneh, Irad
    Eldar, Yonina C.
    Cohen, Oren
    Segev, Mordechai
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [38] Statistical Sparsity-Based Learning for Ultra-Wideband Radar Signal Reconstruction
    Mirbeik, Amir
    Lawrence, Victor
    LaPeruta, Thomas A.
    Popescu, Cristian M.
    Hohil, Myron E.
    Tavassolian, Negar
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS III, 2021, 11746
  • [39] A Sparsity-Based Passive Multistatic Detector
    Zhang, Xin
    Sward, Johan
    Li, Hongbin
    Jakobsson, Andreas
    Himed, Braham
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (06) : 3658 - 3666
  • [40] Why Sparse? Fuzzy Techniques Explain Empirical Efficiency of Sparsity-Based Data- and Image-Processing Algorithms
    Cervantes, Fernando
    Usevitch, Bryan
    Valera, Leobardo
    Kreinovich, Vladik
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 419 - 428