Sparsity-based Image Reconstruction Techniques for ISAR Imaging

被引:0
|
作者
Raj, Raghu G. [1 ]
Lipps, Ronald [1 ]
Bottoms, A. Maitland [1 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
来源
2014 IEEE RADAR CONFERENCE | 2014年
关键词
ISAR; Imaging; Sparsity; Motion Compensation; Compressive Sensing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present novel techniques for ISAR imaging via a Sparsity-based image reconstruction methodology. The latter offer a distinct advantage of Fourier based reconstruction techniques by offering the flexibility of using different basis functions to represent the underlying scene structure being imaged. We derive our ISAR algorithm in detail and present experimental results on real ISAR data showing its superiority over traditional Fourier based image reconstruction. We also demonstrate how our formulation of the ISAR imaging problem overcomes some of limitations associated previous approaches to CS (Compressive Sensing) based ISAR imaging in the literature.
引用
收藏
页码:974 / 979
页数:6
相关论文
共 50 条
  • [21] Joint Sparsity-Based Imaging and Motion Error Estimation for BFSAR
    Pu, Wei
    Wu, Junjie
    Wang, Xiaodong
    Huang, Yulin
    Zha, Yuebo
    Yang, Jianyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03): : 1393 - 1408
  • [22] Sparsity-based inverse halftoning
    Son, C. H.
    Park, H. M.
    ELECTRONICS LETTERS, 2012, 48 (14) : 832 - 833
  • [23] Sparsity-based image monitoring of crystal size distribution during crystallization
    Liu, Tao
    Huo, Yan
    Ma, Cai Y.
    Wang, Xue Z.
    JOURNAL OF CRYSTAL GROWTH, 2017, 469 : 160 - 167
  • [24] SPARSITY-BASED IMAGE DEBLURRING WITH LOCALLY ADAPTIVE AND NONLOCALLY ROBUST REGULARIZATION
    Dong, Weisheng
    Li, Xin
    Zhang, Lei
    Shi, Guangming
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1841 - 1844
  • [25] Sparsity-based no-reference image quality assessment for automatic denoising
    Meisam Rakhshanfar
    Maria A. Amer
    Signal, Image and Video Processing, 2018, 12 : 739 - 747
  • [26] Sparsity-based no-reference image quality assessment for automatic denoising
    Rakhshanfar, Meisam
    Amer, Maria A.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (04) : 739 - 747
  • [27] Single Image Interpolation via Adaptive Nonlocal Sparsity-Based Modeling
    Romano, Yaniv
    Protter, Matan
    Elad, Michael
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (07) : 3085 - 3098
  • [28] Estimating Posterior Image Variance with Sparsity-Based Object Priors for MRI
    Chen, Yujia
    Lou, Yang
    Eldeniz, Cihat
    An, Hongyu
    Anastasio, Mark A.
    MEDICAL IMAGING 2017: PHYSICS OF MEDICAL IMAGING, 2017, 10132
  • [29] Sparsity-based Image Denoising via Dictionary Learning and Structural Clustering
    Dong, Weisheng
    Li, Xin
    Zhang, Lei
    Shi, Guangming
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 457 - 464
  • [30] Sparsity-based single-shot subwavelength coherent diffractive imaging
    Szameit A.
    Shechtman Y.
    Osherovich E.
    Bullkich E.
    Sidorenko P.
    Dana H.
    Steiner S.
    Kley E.B.
    Gazit S.
    Cohen-Hyams T.
    Shoham S.
    Zibulevsky M.
    Yavneh I.
    Eldar Y.C.
    Cohen O.
    Segev M.
    Nature Materials, 2012, 11 (5) : 455 - 459